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Abstract: Deep learning has transformed medical image analysis, achieving
remarkable precision in tasks like diagnosing diseases and segmenting images. In
this research, we assess how well Convolutional Neural Networks (CNNs) perform in
classifying medical images. The models were trained across several epochs, and
their effectiveness was evaluated using accuracy and loss metrics. Our findings
underscore the reliability and effectiveness of CNNs, showcasing their promise for
use in clinical decision-making tools.
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1. Introduction

The rapid growth of biomedical data has driven the need for advanced
computational tools capable of analyzing complex medical images. Deep learning,
particularly CNNs, has emerged as a powerful technique for automatic feature
extraction and image classification. In this work, we assess the training
performance of a CNN architecture applied to medical image classification by
analyzing the loss and accuracy over 20 and 40 epochs.

2. Methodology

We utilized a Convolutional Neural Network (CNN) model trained on an extensive
collection of medical images to evaluate its performance in image classification. The
network’s design included multiple convolutional layers that autonomously extract
hierarchical spatial features from the input data. These layers were paired with
max-pooling operations to downsample the feature maps, improving computational
efficiency and generalization by retaining only the most significant patterns.
Following the convolutional and pooling stages, fully connected layers consolidated
the extracted features for the final classification. To enhance the model’s ability to
capture complex data relationships, ReLU (Rectified Linear Unit) activation functions
were applied after each layer, introducing non-linearity and enabling the learning of
sophisticated patterns.

2.1.DATA SET

The dataset comprised a diverse collection of labeled medical images representing
multiple diagnostic categories, enabling a comprehensive evaluation of the model’s
segmentation and classification performance.
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2.2.NETWORK ARCHITECTURE

e Convolutional layers: Extracted hierarchical features from the input images.

Table 1: Model Architecture

Pooling layers: Reduced dimensionality while preserving critical features.
Fully connected layers: Mapped features to output classes.

Activation function: ReLU for non-linearity.

Loss function: Cross-entropy for binary classification.

» Optimization algorithm: Adam optimizer.

Layer Output Shape Param #
conv2d 24 (510, 510, 32) 896
max_pooling2d 24 (255, 255, 32) 0
conv2d 25 (253, 253, 64) 18,496
max_pooling2d 25 (126, 126, 64) 0
conv2d 26 (124, 124, 128) 73,856
max_pooling2d 26 (62, 62, 128) 0
flatten_8 (492032) 0
dense 16 (128) 62,980,224
dense_17 (2) 258

3.Training Procedure

The model was trained for 20 and 40 epochs to assess its learning progression at
different training stages. Throughout each epoch, key performance indicators were
recorded to monitor improvements. The loss function, which quantifies the
difference between predicted outputs and actual labels, was tracked to evaluate
how effectively errors decreased during training. Concurrently, accuracy
representing the proportion of correctly classified samples was measured at every
iteration. By analysing these metrics, we could determine whether the model
successfully converged by progressively adapting to the training data or exhibited
potential overfitting, where performance plateaued or degraded despite additional

training.
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4. Results
4.1. LOSS CURVE ANALISIS

As depicted in Figure 2, the accuracy of the CNN improved consistently with
training. The model achieved higher accuracy after 40 epochs, indicating the
benefit of extended training.
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4.2. Accuracy Curve Analysis

As depicted in Figure 2, the accuracy of the CNN improved consistently with
training. The model achieved higher accuracy after 40 epochs, indicating the
benefit of extended training.
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5. Discussion

The performance improvement observed with extended training underscores the
importance of sufficient epochs in achieving optimal network convergence. The
decrease in loss and the corresponding increase in accuracy reflect the model’s
ability to learn discriminative features from medical images.

CNNs have proven effective in medical image classification due to their capability to
capture spatial hierarchies. The results of this study align with previous findings in
the literature, which highlight the effectiveness of deep learning models in medical
image analysis.

Table 2: Loss and Accuracy for Test ensemble

Epochs Final Training Loss Final Training Accuracy
20 0.35 87%
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\40 0.21 93%

6. Conclusion

The structured architecture of CNNs, combined with advanced performance
enhancement techniques, has significantly improved their effectiveness in medical
anomaly detection. Techniques like data augmentation, transfer learning, and
attention mechanisms have addressed challenges such as limited data and model
generalization.

Future research should explore integrating multimodal data and developing
interpretable CNN architectures to further advance their clinical applications.
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