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Abstract: Deep learning has transformed medical image analysis, achieving remarkable
precision in tasks like diagnosing diseases and segmenting images. In this research, we
assess how well Convolutional Neural Networks (CNNs) perform in classifying medical
images. The models were trained across several epochs, and their effectiveness was
evaluated using accuracy and loss metrics. Our findings underscore the reliability and
effectiveness of CNNs, showcasing their promise for use in clinical decision-making tools.

Keywords: convolutional neural networks, deep learning, anomaly detection, computer
vision, medical imaging

Received: April 08, 2025

Revised: May 14, 2025

Accepted: June 06, 2025

Published: July 25, 2025

Citation: Bouflous, S., Halimi A., Bouzekraoui Y., Dahmani K. Patient radiation protection



and quality assurance of therapeutic treatment in radiotherapy. Moroccan Journal of Health
and Innovation (MJHI) 2025, Vol 1, No 2. https://mjhi-smb.com

Copyright: © 2025 by the authors.

Introduction1.

The rapid growth of biomedical data has driven the need for advanced computational tools
capable of analyzing complex medical images. Deep learning, particularly CNNs, has
emerged as a powerful technique for automatic feature extraction and image classification.
In this work, we assess the training performance of a CNN architecture applied to medical
image classification by analyzing the loss and accuracy over 20 and 40 epochs.

2. Methodology
We utilized a Convolutional Neural Network (CNN) model trained on an extensive collection
of medical images to evaluate its performance in image classification. The network’s design
included multiple convolutional layers that autonomously extract hierarchical spatial
features from the input data. These layers were paired with max-pooling operations to
downsample the feature maps, improving computational efficiency and generalization by
retaining only the most significant patterns. Following the convolutional and pooling stages,
fully connected layers consolidated the extracted features for the final classification. To
enhance the model’s ability to capture complex data relationships, ReLU (Rectified Linear
Unit) activation functions were applied after each layer, introducing non-linearity and
enabling the learning of sophisticated patterns.

2.1.DATA SET
The dataset comprised a diverse collection of labeled medical images representing multiple
diagnostic categories, enabling a comprehensive evaluation of the model’s segmentation
and classification performance.
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2.2.NETWORK ARCHITECTURE
Convolutional layers: Extracted hierarchical features from the input images.
Pooling layers: Reduced dimensionality while preserving critical features.
Fully connected layers: Mapped features to output classes.
Activation function: ReLU for non-linearity.
Loss function: Cross-entropy for binary classification.
Optimization algorithm: Adam optimizer.

Table 1: Model Architecture

        Layer Output Shape       Param #
conv2d_24 (510, 510, 32) 896
max_pooling2d_24 (255, 255, 32) 0
conv2d_25 (253, 253, 64) 18,496
max_pooling2d_25 (126, 126, 64) 0
conv2d_26 (124, 124, 128) 73,856
max_pooling2d_26 (62, 62, 128) 0
flatten_8 (492032) 0
dense_16 (128) 62,980,224
dense_17 (2) 258

3.Training Procedure
The model was trained for 20 and 40 epochs to assess its learning progression at different
training stages. Throughout each epoch, key performance indicators were recorded to
monitor improvements. The loss function, which quantifies the difference between predicted
outputs and actual labels, was tracked to evaluate how effectively errors decreased during
training. Concurrently, accuracy representing the proportion of correctly classified samples
was measured at every iteration. By analysing these metrics, we could determine whether
the model successfully converged by progressively adapting to the training data or exhibited
potential overfitting, where performance plateaued or degraded despite additional training.



4. Results

4.1. LOSS CURVE ANALISIS
As depicted in Figure 2, the accuracy of the CNN improved consistently with training. The
model achieved higher accuracy after 40 epochs, indicating the benefit of extended training.

4.2. Accuracy Curve Analysis
As depicted in Figure 2, the accuracy of the CNN improved consistently with training. The
model achieved higher accuracy after 40 epochs, indicating the benefit of extended training.



5. Discussion
The performance improvement observed with extended training underscores the importance
of sufficient epochs in achieving optimal network convergence. The decrease in loss and the
corresponding increase in accuracy reflect the model’s ability to learn discriminative
features from medical images.

CNNs have proven effective in medical image classification due to their capability to
capture spatial hierarchies. The results of this study align with previous findings in the
literature, which highlight the effectiveness of deep learning models in medical image
analysis.

Table 2: Loss and Accuracy for Test ensemble

Epochs Final Training Loss Final Training Accuracy
20 0.35 87%



40 0.21 93%

6. Conclusion
The structured architecture of CNNs, combined with advanced performance enhancement
techniques, has significantly improved their effectiveness in medical anomaly detection.
Techniques like data augmentation, transfer learning, and attention mechanisms have
addressed challenges such as limited data and model generalization.

Future research should explore integrating multimodal data and developing interpretable
CNN architectures to further advance their clinical applications.
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