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Abstract: CVDs are the leading cause of death worldwide, accounting for
approximately 17.9 million deaths annually. Management is effectively performed
with continuous real-time monitoring for early detection and customized care. This
paper discusses the feasibility of using Al in portable cardiac monitoring devices to
overcome traditional tools such as ECGs and Holter monitors, which have always
been confined to hospitals. The novelty of this work is the exploitation of Al
algorithms such as machine learning and deep learning models to enhance
diagnostic capabilities for wearable devices. It also presents a proposed
methodology that outlines state-of-the-art wearable devices, complemented by an
analysis of sensor technologies such as ECG and PPG. Real-time Al processing
frameworks, including those for edge computing, are reviewed to mitigate
challenges such as noisy signals or limited battery lifetimes. Ethical considerations
concerning data privacy and algorithmic fairness ensure that these systems are
responsibly deployed. Preliminary conclusions are that Al on wearable devices
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empowers cardiac care with the early detection of arrhythmias, allows for the best
performance of pacemakers, and reduces hospital readmissions. This research also
advances a more active strategy for integrating wearable devices with Al for the
next generation in proactive and personalized cardiac care. Future work would
involve the validation of those findings with clinical trials and look into broader
applications in multimorbid conditions.
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1. Introduction

1.1. Background and Motivation

CVDs are the leading cause of death worldwide, accounting for almost 17.9 million
deaths annually (WHO, 2023). Despite all the advances in medical technology, early
detection and continuous monitoring still remain one of the biggest challenges of
outpatient and home-based care. Early detection of cardiac abnormalities like
arrhythmias, myocardial ischemia, and heart failure deterioration is of vital
importance for timely intervention, reduction in hospital readmission, and
improvement in patient outcomes (Lee et al., 2022).

Until today, 12-lead electrocardiograms and Holter monitors have been the most
common diagnostic tests for cardiac disorders. Both are extremely limited. Hospital-
based ECGs yield only snapshots of brief moments in the activity of the heart, thus
usually missing transient arrhythmias or ischemic events. These monitoring systems
also restrain mobility, requiring that patients visit clinical settings, and thereby
render real-world tracking of cardiac function difficult. Even ambulatory solutions,
such as Holter monitors, provide only intermittent monitoring, which is usually
performed in spans of 24 to 48 hours. This span may be too short a time to detect
less frequent cardiac abnormalities. Most such devices are bulky and uncomfortable
to wear, therefore resulting in very poor patient compliance, which hinders their
ability to perform as long-term monitors of cardiac patients (Kim et al., 2023).
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Wearable biomedical devices bring a paradigm shift in providing continuous, non-
invasive cardiac monitoring outside clinical settings. These wearable devices
incorporate miniaturized biosensors that are capable of measuring
electrocardiography, photoplethysmography, seismocardiography, and
ballistocardiography, thus allowing real-time remote monitoring of cardiac activity
without hindrance in the mobility of the patients (Kim et al., 2023). Unlike typical
hospital-based systems, wearable cardiac monitors can continuously track cardiac
rhythm and hence allow the identification of abnormalities well in advance and the
administering of personalized health interventions.

Commercially available cardiac monitoring wearables have already shown clinical
utility. The Apple Watch and Fitbit, with their PPG-based heart rate monitoring, have
immense potential for the detection of AFib-a major risk factor for stroke-while
AliveCor’s KardiaMobile has received FDA clearance for the detection of arrhythmias
using a single-lead ECG. These point to the very fact that wearable cardiac
monitoring is going beyond fitness tracking into medical-grade, Al-enhanced
diagnostics (Perez et al., 2019).

In essence, integration with Al and ML will further amplify the diagnosis probability
of a wearable cardiac monitor. Algorithms of Al manage volumes of real-time
physiological data with high precision for the identification of abnormal heart
patterns. Deep learning models, including CNNs and RNNs, further empower these
wearable systems in the classification of cardiac rhythms and detection of
anomalies, while some are even able to predict impending cardiovascular events
before their symptomatic manifestation could occur (Nguyen et al., 2024). Contrary
to the traditional diagnostic techniques that rely on fixed threshold values,
wearables driven by Al include a personalized approach while adapting to the
individual data of patients over time.

Despite the enormous potential, there are a couple of technical challenges that Al-
driven wearable cardiac monitors face in striving to ensure accuracy, efficiency, and
reliability. Signal quality and motion artifacts rank among the principal challenges.
As wearable sensors are naturally exposed to movement and environmental noise,
there could be some kind of distortion in ECG and PPG signals, reducing diagnostic
accuracy. Advanced noise-filtering algorithms and novel Al-based signal
enhancement techniques are under active development, which advances real-time
cardiac analysis by reducing motion-induced errors (Wu et al., 2023).

Another critical challenge for wearable cardiac monitors is to ensure computational
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and energy efficiency. Whereas Al-based models are computationally intensive,
wearable devices have very limited processing capabilities due to their small form
factor and restricted battery life. Optimized Al models developed using techniques
such as TinyML, knowledge distillation, and quantization enable real-time cardiac
monitoring with minimal energy consumption (Williams et al., 2023; Chen et al.,
2025). New energy-harvesting technologies, such as solar-powered wearables, are
also under study to enable even longer battery lifetimes and hence extended
continuous monitoring capabilities (HHS, 2024).

The most important non-technical consideration for mass acceptance is the issue of
privacy and security associated with Al-enabled wearables for health monitoring.
Because the health of the heart concerns sensitive personal health information, the
security of data and protection of privacy become extremely important. Al-powered
monitoring systems have to be designed under the strict data protection regulations
of HIPAA in the U.S. and the General Data Protection Regulation (GDPR) of the EU
(European Commission, 2021). Federated learning is a new class of Al that enables
on-device training of Al models without transferring the raw patient data to cloud
servers, significantly enhancing privacy and reducing the possibility of data
breaches (European Commission, 2021).

Future generations of wearable cardiac monitors powered by Al will integrate multi-
modal sensor fusion, rich Al analytics, and hybrid cloud-edge computing
architectures into fully automated realtime monitoring solutions. Hybrid Al models
will also allow low-power, real-time inference on wearable devices, using cloud
computing for more advanced predictive analytics. Other new developments also
include smart pacemakers and Al-driven implantable cardiac devices for adaptive,
real-time responses to cardiovascular conditions, improving cardiac disease
management and patient survival rates. This wearable cardiac monitor will also be
part of a smart home ecosystem in which loT-based devices communicate to create
a holistic health monitoring environment (Moshawrab et al., 2023; Dong et al.,
2024).

1.2. Objective and scope

This study will perform a theoretical feasibility analysis of wearable cardiac monitors
using Al, focusing on the following four significant aspects:

 Integration of multimodal sensors: ECG, PPG and SCG.
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» Computational feasibility with respect to real-time Al processing.
» Energy efficiency in relation to energy consumption constraints.

This is not an experimental study; no prototype has been developed and no clinical
trials have been carried out. However, the various technological and practical
obstacles that exist in deploying an Al-powered cardiac monitoring system are
considered.

2. Feasibility of Wearable Sensor
Technologies

Wearable cardiac monitoring devices generally use different sensor technologies,
which provide the actual acquisition of physiological and biomechanical signals. In
fact, each type of sensor technology has advantages facing many challenges,
including those dealing with accuracy and power consumption, while ensuring
efficiency during processing. In essence, their usage ideally should ensure low
energy consumption while guaranteeing high signal fidelity even at extreme
intensities of motion, which would be expected from reliable cardiac monitoring.

2.1. Electrocardiography (ECG)

The ECG is still considered the gold standard for monitoring arrhythmias, heart rate
variability, and myocardial ischemia. The ECG sensors measure the electrical
activity of the heart through electrodes attached to the skin that record changes in
voltage as the heart contracts and relaxes.

Benefits will be ECG that will be highly diagnostic, with great accuracy in detecting
arrhythmias, clinical validation in both hospital and portable applications, and the
real-time, continuous monitoring of patients in acute situations. PECG usual
challenges include motion artefacts, which make signals less reliable in portable
format; it requires a bigger power supply for continuous operations and electrode
placement affects signal quality.

Recent development of flexible ECG sensors dramatically improves the quality of
signal acquisition, reducing noise introduced by subject movement and allowing
higher portability. The implementation of new dry electrode technologies free from



MJ HI ’ Moroccan Journal of
Health and Innovation

conductive gel is yet another effort aimed at improving the patient’s comfort, thus
extending the portability time (Kim et al., 2023).

2.2. Photoplethysmography (PPG)

Because this technology is by definition non-invasive and low power, it finds many
applications in consumer smart wearables and fitness trackers. Light sources within
PPG sensors produce infrared or green light, the absorption of which changes with
each heartbeat, reflecting changes in blood volume.

Advantages of PPG are that it consumes low power and is thus fit for battery-
powered wearables. It is also non-invasive, with no need to touch skin directly,
unlike the electrodes in ECG. The small size and low cost hence make it very
applicable in many commercial wearable devices.

However, some challenges still exist : It is prone to motion artefacts and noise,
hence its accuracy can degrade. Low HRV accuracy results in a non-reliable
diagnosis. Poor performances on subjects with darker skin brings up a bunch of bias
related issues.

Regarding the enhancement in PPG, Al-based de-noising algorithms and multi-
wavelength techniques in literature put in place by different researchers
compensate for variations in skin tone and motion artefacts compensation (Wu et
al., 2023).

2.3. Seismocardiography (SCG) and
ballistocardiography (BCG)

There are two presently used methods to measure cardiac mechanical activity:
Seismocardiography and ballistocardiography. Both these methods offer more
additional information on cardiac performance that cannot be provided by either
ECG or PPG.

SCG records chest wall vibrations produced by myocardial contractions. It gives
information about contractility and the ejection fraction of the cardiac cycle.

It provides the identification of micro-vibrations in the body resulting from cardiac
output and ejection of blood into the circulation. So many advantages, but just to
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name a few: SCG and BCG have better overall system reliability by
complementation with ECG and PPG. They offer a noninvasive way to estimate
cardiac contractility. They can also be incorporated into wearable patches or smart
clothes.

Their major drawbacks are as follows: Sensor placement is critical with regard to the
accuracy of the results. SCG-BCG signals are of relatively low resolution compared
to ECG methods. Signal interpretation is very resource-consuming, considering
computational resources.

Despite all these issues, SCG-BCG fusion with Al-based multimodal cardiac
monitoring becomes a promising direction of research (Moshawrab et al., 2023;
Dong et al., 2024).

2.4. Multimodal sensor fusion

In this context, the ECG, PPG and SCG offer multimodal integration of the sensor
fusion for multifold enhancement in the reliability and precision of these three
sensors. Besides that, the multi-sensor technique so devised reduces each kind of
individual inconvenience while providing a very powerful cardiac anomaly
investigation system.

Example: the ECG is very accurate for monitoring the electrical activity of the heart,
while being very sensitive to the movement artefact itself; on the other hand, the
PPG is not very powerful and is easy to wear, but its diagnostic value is low in terms
of heart rate analysis; while the SCG provides mechanical information and improves
the analysis of contractility.

However, multimodal integration leads to computational complexity and power
requirements, which calls for hardware and software architectures optimised for
real-time processing (Zhou et al., 2023; John et al., 2024). Edge computing and Al-
enhanced signal processing solutions are being developed to address these
challenges.

The following chart compares ECG, PPG and SCG in terms of accuracy, energy
efficiency and robustness to motion to provide a better comparison of the strengths
and weaknesses of each sensor type.

Figure 1. Comparison of Wearable Cardiac Sensor Technologies
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This figure represents the fact that there is a trade-off in the sensor types, and the
optimum needs to hybridize them into a balancing act among accuracy, power
consumption, and robustness toward motion artifacts. While ECG has excellent
diagnostic precision, it is power-consuming and sensitive to motion. PPG is energy-
efficient but lacks real-world accuracy. SCG is useful for mechanical insight but
involves precise sensor placement.

Wearable cardiac monitors can achieve maximum reliability and diagnostic
performance using multi-modal sensor fusion in the face of a variety of individual
sensor limitations. The forthcoming next generation of wearable Al-enabled
personalized health will be integrated.

3. Al-Based Signal Processing in
Cardiac Monitoring

The development of Al-driven wearables for cardiac monitoring should go hand in
hand with sophisticated signal processing techniques to provide real-time, precise
detection of anomalies in the heart, which in turn would mean a balance between
energy efficiency and computational constraints. Traditional cloud-based processing
introduces latency, raises privacy concerns, and dependency on network
connectivity. In its place, edge Al has started to emerge as the favored choice
where ondevice Al inference will result in faster and more secure diagnosis without
transferring sensitive data to external servers.

It is challenging to realize this in light of memory, computational power, and energy
requirements imposed by deep learning models. Wearables with suitable
architecture in Al together with techniques of model optimization will meet the
challenges of high diagnostic accuracy at power constraints.

3.1. Wearable Al Architectures

Therefore, sophisticated techniques in signal processing have developed to become
an integral ingredient of trade-offs involving energy efficiency, computation
constraints, and real-time anomaly detection of the heart. Most of all, it was limited
by latency and issues related to data privacy, given that cloud-based processing is
highly dependent on connectivity. Edge Al has hence grown as one of the preferable
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ways where inference of on-device Al may speed up and thus secure the diagnoses
without needing the transmission of sensitive information to servers sitting at
distant locations.

Deep learning models, with huge demands in memory, computational power, and
energy, cannot be directly deployed on wearable devices. Efficient Al architectures
and model optimization technigues have been employed for making a wearable
device operate under power constraints with high diagnostic accuracy (Nguyen et
al., 2024).

Convolutional Neural Networks for ECG Classification

The wide applications of CNNs in ECG waveform classification include proficiency in
extracting spatial patterns and detecting abnormalities such as AFib, ventricular
tachycardia, and bradycardia. Several CNN-based models, trained on vast amounts
of ECG datasets, were then deployed into FDAapproved wearable devices owing to
their high diagnostic precisions (Nguyen et al., 2024).

CNN benefits in ECG classification: High accuracy of detection of cardiac
abnormalities, feature extraction is automatic, with not much manual analysis
required. Suitable for real-world wearable deployment.

Challenges with CNN: Though possible, some reduction of the computational load
can be achieved through optimization.

Hybrid CNN-LSTM Model for Time-Series Analysis

Although performing well, CNNs cannot catch long-run temporal dependencies in
cardiac signals. Hence, RNN variant-LSTM-comes out to be ideal for applications
dealing with such sequential timeseries data. Therefore, the study of heart rate
variability and anomaly detection within become of extensive usage. The hybrid
model employs a combination of both: CNN for feature extraction from the ECG
waveform and LSTM for analyzing the time-dependent trends in HRV.

It benefits from this hybrid model in enhancing Al-based cardiac monitoring,
especially for diagnosis related to heart failure, ischemia, and the progression of
arrhythmias (Nguyen et al., 2024). Model Optimization on Wearable Devices

Deep learning models, although very memory-intensive and computationally
expensive, need optimization on these resource-constrained wearable devices. The
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major techniques include:

* Knowledge Distillation: The technique of knowledge transfer from a big,

complex Al model into a small, efficient one reduces computational demand.

* Quantization: A good example is reducing 32-bit floating-point models to 8-bit

integer models, which decreases memory usage by 75% while maintaining
accuracy (Nguyen et al., 2024).

e Pruning: This removes unnecessary neural connections, hence decreasing

model complexity without major loss in accuracy.

It could be inferred that all these methods of optimization will allow efficiency in
ECG signal processing with battery life in Al-powered wearables while ensuring high
diagnostic performance.

Figure 2. Al Processing In Wearable Cardiac Monitoring

The following is a summary of the flowchart above for the sequential Al processing
pipeline in wearable cardiac monitoring systems:

1.
2.

Wearable sensors comprising ECG, PPG, and SCG capture physiological signals.
Pre-processing operations filter noise from the signal and normalize it, hence
preparing it for superior processing by the artificial intelligence system.

. Feature extraction that would, in turn, bring out some critical waveform

patterns.

. The CNN-based classifiers classify the signals of ECG and detect any

arrhythmia.

. LSTM analyzes temporal variations of heart rate variability.
. A hybrid CNN-LSTM model fuses spatial and temporal features for accurate

anomaly detection.

. When an anomaly is detected, diagnostic alerts are triggered, hence allowing

for real-time

. Feedback is provided instantly to the user via a smartphone or wearable

interface.

This Al-based approach provides fast real-time cardiac monitoring, improving early
diagnosis, patient engagement, and personalized healthcare.
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3.2. Federated Learning for Preserving Privacy

One huge challenge in Al-powered monitoring is how to assure data privacy for the
patient. Traditional cloud Al involves continuous data uploading, raising several
regulatory and data ownership issues apart from other security concerns. Thus, the
newly developed architecture, known as federated learning, enables model training
on devices where patients maintain their private data (Williams et al., 2023).

How Federated Learning Works:

1. Each wearable device trains an Al model locally with patient-specific ECG and
PPG data.

2. Instead of raw data transmission to the central server, model updates are
transmitted.

3. The global Al model, on a central server, is refined by aggregating updates
from multiple

4. Return the improved Al model from wearables in order to boost the accuracy
while not

exposing any patient data (Williams et al., 2023).

Some key takeaways the principals can have from Federated Learning in wearables
are: Data privacy is guaranteed since no raw patient data is being sent out. It
reduces bandwidth and power consumption, hence more efficient. Learns from
decentralized data sources increasing model accuracy across diverse populations.
Complies with regulations (HIPAA, GDPR) and thus enables ethical Al deployment
(HHS, 2024), (European Commission, 2021).

Figure 3. Federated Learning In Wearable Cardiac Monitoring
The above flowchart represents how FL works in wearable cardiac Al systems:

1. Wearable devices themselves, like smartwatches and ECG patches, locally
train an Al model based on patient-specific ECG and PPG data.

2. Instead of sharing raw data, encrypted model updates are sent to a central Al
server.

3. The central server aggregates updates arriving from multiple devices, refining
the global Al model.

4. The improved global model is broadcast to the participating devices in order to
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improve the local Al models further.
5. Every device keeps on training on freshly added data and, in parallel,
continuously improving onboard Al performance.

What this means is that there is no leakage of information outside the device;
hence, security and compliance are inherently improved, further optimizing Al
diagnostics.

Cardiac monitoring by next-generation wearables will be entirely dependent on Al-
enabled signal processing. Hybrid CNN-LSTM architecture, on-device model
optimizations, and even privacypatient data-based federated learning are the
powerful building blocks to drive Al forward in wearables. That would open up
pathways to real-time, personalized, proactive cardiac care.

4. Power Consumption and Energy
Efficiency in Al-Driven Wearable
Cardiac Monitoring

Continuous operation of Al-driven wearable cardiac monitors requires minimal
power consumption to ensure long battery life and continuous monitoring. As
wearable devices use small rechargeable batteries, it is essential to reduce power
consumption so that they can be used in the real world (Gautam et al., 2022; Zheng
et al., 2025).

4.1. Power Consumption Analysis

The total power consumption of an Al-driven wearable cardiac monitoring system is
influenced by three primary components:

Table 1. Power Consumption Analysis of Al-Driven Wearable Cardiac Monitoring
Components

* ECG sensor: 2.1 mW. ECG electrodes require continuous acquisition of the
electrical signal that is part of the baseline consumption.

e MCU running Al inference: 3.2 mW. Al-driven classification and HRV analysis
require heavy computation; hence, this module is one of the highest power-
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consuming components.
e BLE transmission: 1.5 mW. Wireless communication is required for real-time
monitoring; however, BLE data transmission still remains power-consuming.

Although 6.8 mW is a small value, considering long-term operation, a regular
battery, for example, 40 mAh Li-Po, will be quickly depleted if no energy
optimization strategies are implemented (Gautam et al., 2022; Zheng et al., 2025).

4.2. Energy Efficiency Optimization Strategies

To extend the battery life and make Al-powered wearables more sustainable,
several optimization techniques are employed:

a.Power Reduction by Duty Cycling

Instead of continuous operation, sensors can be turned on periodically to avoid
unnecessary power consumption.

ECG sensors can sample in intervals, such as every 5 seconds, rather than
constantly, which already can cut energy consumption by as much as 40%.

Event-triggered monitoring: Al may detect irregular cardiac patterns before the full
monitoring mode is turned on, further extending battery life.

b.TinyML for Efficient Al

e Tiny Machine Learning-TinyML-allows low-power Al processing directly on the
MCU.

e Model quantization and knowledge distillation shrink Al model size by 75%,
enabling more powerefficient real-time inference.

* Optimized neural network architectures, for example, MobileNet or Edge TPU
models, reduce the computational overhead with no loss in accuracy.
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c.Energy Harvesting for Self-Powered
Wearables

* Wearable patches or smartwatches can be integrated with flexible photovoltaic
cells. The cells yield up to 10 pyW/cm? under indoor lighting conditions,
increasing battery lifetime by 20%. ¢ Energy-harvesting TEGs are able to
convert body heat into electrical energy continuously for supplementing power
(Gautam et al., 2022; Zheng et al., 2025)

Figure 4. Power Optimization In Wearable Al Monitoring

The key power optimization techniques will enable a single charge to keep an Al-
driven cardiac monitor running for much longer and thereby make it a more viable
activity in practical medical applications.

Above is the flowchart that demonstrates how an Al-driven wearable cardiac
monitor saves power:

1. Al-Driven Wearable Cardiac Monitoring: High, 6.8 mW, because the sensors
operate constantly, along with Al inference and BLE transmission.

2. Application of optimization techniques leads to energy efficiency.

3. The following are three major power-saving techniques implemented:

e Duty Cycling: The activation of sensors is reduced, thus minimizing the
wastage of energy on redundant usage.

e TinyML optimisation: This enables Al inference with low energy consumption,
reducing the computational load.

* Energy harvesting: Energy production based on solar and body heat increases
battery life.

These methods, once implemented, materialize a wearable device with optimized,
extended battery life that may allow real-world wearability.

Power consumption analysis identifies ECG sensors, Al interference, and BLE

transmission as major power-consuming components. With different optimization
strategies in place, such as Duty Cycling, TinyML, and Energy Harvesting, it helps
reduce the power usage in order to extend battery life. How energy efficiency can
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be achieved in Al-driven wearables.

5. Feasibility Analysis of Al-driven
Wearable Cardiac Monitoring

Overall, the viability of Al-driven wearable heart monitors will be driven by sensor
accuracy, processing capability, energy efficiency, connectivity, user experience
and regulatory compliance. Although considerable progress has been made in Al-
based signal processing, a number of technical, practical and regulatory challenges
need to be addressed before widespread diffusion can take place. (Moshawrab et
al., 2023; Dong et al., 2024).

This section considers each important component of the Al-powered wearable
cardiac monitoring system in depth to analyze its advantages, challenges, and
feasibility ratings in view of the current stage of development and their future
potentials. Feasibility ratings * out of 5 are given to denote how ready a component
is for deployment and also to show areas where further optimizations are needed.

The following feasibility breakdown will analyze respective strong points, some
limitations, and technological gaps in the implementation of wearables with
enhanced Al cardiac monitoring.

Feasibility Breakdown

Table 2. Feasibility Assessment of Al-Driven Wearable Cardiac Monitoring
Components

This feasibility assessment highlights the current readiness and limitations of each
component of Aldriven cardiac wearable devices. While there have been significant
advances in the core technologies of wearable sensors, Al-based signal processing
and wireless communication, privacy, regulatory compliance and energy efficiency
remain areas that require improvement to enable scalability for real-world adoption.
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6.Conclusion

This work justifies the technical feasibility of integrating multimodal sensors with
edge Al processing and Al-driven wearable cardiac monitoring based on the
principle of federated learning. Advanced biosensors, real-time Al algorithms, and
low-power processing techniques finally meet to bring about continuous,
personalized cardiac monitoring with enhanced diagnostic accuracy, the possibility
of early detection of arrhythmias, and proactive intervention strategies. In this way,
the final results of the research will be minimized re-admission to hospitals,
improved patient outcomes, and an important step toward remote healthcare.

However, besides these technological developments, several important challenges
have to be resolved before this technology could see general clinical applications,
which include:

» Sensor reliability

e Energy efficiency

e Wireless communication & data security
* Regulatory and ethical considerations

Wearable devices for cardiac monitoring using Al have the immense capability to
bring in a paradigm change in personalized cardiac care. This Al-powered wearable
device will connect powerfully amongst technology, medicine, and regulatory
frameworks to make proactive cardiovascular disease management a possibility
from mere diagnosis-based treatment to continuous home-based monitoring.
Simultaneously, it empowers patients, reduces the healthcare burden, and hence
improves overall cardiac health outcomes in the world.
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