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Abstract: The integration of artificial intelligence (Al) has led to notable
advancements in medical imaging. However, this progress is limited by the lack of
expert-annotated data, particularly for rare pathologies, which hampers scientific
research and the training of machine learning models. Generative artificial
intelligence meets this need by synthesizing realistic images that correspond to
ground-truth data, thereby increasing the data available for training and evaluating
Algorithms. In this review, we focus on the cardiac domain, and more specifically on
magnetic resonance imaging (MRI), which is an important tool in the diagnosis of
cardiac pathologies (the world’s leading cause of death). We examine various
generative Al methodologies, such as generative adversarial networks (GANSs),
variational autoencoders (VAEs), and diffusion models, applied to cardiac MRI data.
Furthermore, we discuss the implications of these techniques in generating
synthetic datasets, augmenting rare pathological cases, and improving
segmentation accuracy and diagnostic outcomes. Finally, we highlight the
challenges, limitations, and future directions of integrating generative Al into
cardiac MRI workflows, aiming to guide further research and clinical translation.
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1. Introduction

Cardiac magnetic resonance imaging is an important modality in the diagnosis,
intervention and management of cardiovascular diseases which is one of the most
common causes of death in the world according to the world health organization
(Jafari et al., 2023) . By providing high-resolution images of the heart, accurate
identification of anatomy, functions and tissues characterization, it can identify
cardiac pathologies such as myocardial infarction, ischemic heart disease,
cardiomyopathy, and congenital heart defects. The application of cardiac MRI is
based on the segmentation of heart structures and regions of interest for analysis.
However, manual segmentation is time-consuming and labor-intensive, making it
susceptible to inter-observer variability. This highlights the strong need for
automated segmentation methods (Kanakatte et al., 2022).

The integration of artificial intelligence (Al) into the automation of cardiac
segmentation has experienced significant advancements in recent years. In
particular, the adoption of deep learning techniques such as recurrent neural
networks (RNNs) and convolutional neural networks (CNNs), has revolutionized the
field by achieving exceptional accuracy and efficiency. These methods excelled over
traditional algorithms in effectively delineating complex anatomical structures and
variations in cardiac magnetic resonance imaging (MRI) data (Taraboulsi et al.,
2023). Nevertheless, these models face significant challenges mainly in terms of
relying on a database with expert-annotation. Considering these limitations,
generative artificial intelligence can meet the need by generating realistic synthetic
data, thus increasing the diversity and quantity of available databases, while
preserving pathology-related characteristics. By leveraging techniques such as
(GANSs), (VAEs), and diffusion models, generative Al can synthesize realistic cardiac
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MRI images with corresponding ground-truth annotations. These synthetic datasets
have the potential to augment existing ones and enhance the training of
segmentation algorithms. and improving diagnostic accuracy by enabling more
robust and diverse model development (Al Khalil et al., 2023).

In this review, we aim to provide a comprehensive analysis of the role of generative
Al in cardiac MRI segmentation. We begin by outlining the different techniques of
generative Al followed by an exploration of state-of-the-art databases devoted to
cardiac MRI semantic segmentation. Next, we discuss the existing works in the
literature and their contributions to synthetic data. Finally, we examine the
challenges and limitations of these approaches and propose future directions to
guide the integration of generative Al into cardiac MRI workflows.

2. Background

Generative Al is an Artificial intelligence field that can generate realistic images,
text and sounds by using deep learning algorithms that are trained on large
amounts of data. Generative Al has seen tremendous growth in recent years and
has been applied to a wide range of practical and creative fields, from art and
entertainment to healthcare and engineering. We briefly introduce the different
generative Al paradigms in the following.

e Generative Adversarial Networks:

Presented by Goodfellow et al. in 2014 (Goodfellow et al., 2014) ,are a novel class of
deep learning techniques (a type of artificial intelligence algorithm). GANs consist of
two models: a discriminator D, which is tasked with distinguishing between real and
fake images, and a generator G, which learns to create realistic data through
training. One type of GANs that is widely used in medical imaging is Pix2Pix GAN
that is designed for image-to-image translation tasks. Pixel-to-pixel, indicating that
the model operates on a pixel-level mapping between input and output images. The
goal is to learn a mapping between an input and a corresponding output image.
Pix2pix uses a conditional GAN architecture, where both discriminator and
generator are conditioned on the input image. This adversarial training process
allows the model to learn to generate high-quality image transformations (Isola et
al., 2024).

¢ Diffusion models:
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Diffusion model is a class of deep learning models used for generating high-quality
images from text descriptions. The name comes from the idea of “diffusion” as a
process of gradually transforming noise into a desired output, and “stable” reflects
the model’s ability to produce consistent high-quality results(Rombach et al., 2022).
Thanks to this iterative denoising process, Stable Diffusion models reach higher
quality than GANs. However, their application in medical imaging remains limited
due to the scarcity of training data with text annotations and their high
computational complexity.

* VAE:

Is a deep learning model designed to generate data similar to the ground truth by
leveraging the principles of autoencoders. It consists of three main components: an
encoder, a decoder, and a loss function. The goal of VAE is to learn both an encoder
and a decoder that map data x to and from a continuous latent space z. The
encoder receives an input image and reduces it to a more compact vector in latent
space, capturing the essential features of the data. The decoder then processes this
compressed vector to reconstruct it, transforming it back into a format that
facilitates prediction of the output image. This process ensures that the data
produced is very similar to the original data, while preserving the diversity of the
results (Kusner et al., 2025), (Kingma and Welling, 2013).

3. Dataset

Annotated datasets play a crucial role in the training and evaluation of GAI models.
In the context of CMRI datasets, it enables models to learn complex patterns and
generate realistic, high-quality results. This section (Table 1) presents some of the
most popular datasets available from CMRI.

Table 1 : Summary of available datasets of CMRI for semantic segmentation
(Annex).

Reference Dataset Number of Citations |Years
cases

(Bernard et al., 2018)  |ACDC 100 train 1848 2018
50 test
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175 train
(Campello et al., 2021) |[[M&Ms 136 test 2020
(Perry et al., 2009) SCD 45 Cine 445 2009
(Kadish et al., 2009)  [LVSC tleos(i train 100 1,3, 2011
(Petitjean et al., 2015) |[RVSC 16 train 264 2015
Y 32 test
(Andreopoulos et al., York ,
2007) University |33 ¢Ine 393 2008

4. Applications of generative Al in cardiac MR imaging

The state of the art in GAIl applications for cardiac MR imaging can be classified into
two main approaches: studies that focus exclusively on synthetic scan generation
without pixel-wise semantic labels, and those that integrate image generation with
segmentation. The following items briefly present the papers corresponding to each
of these two approaches, highlighting the main contributions.

 Unlabeled MRI Scan generation

(Yoon et al., 2023): The Sequence-Aware Diffusion Model (SADM) was introduced for
the generation of longitudinal medical images, such as cardiac and brain MRIs. This
model learns to generate medical images from image sequences, considering their
temporal order. In this way, it can synthesize the last image of a cardiac cycle from
the first image of that cycle. The model was evaluated on public cardiac MRI data,
using the ACDC database.

(Kim and Ye, 2022): This study proposed a model for generating 4D cardiac cycle
images, enabling the visualization of continuous anatomical changes. This model is
particularly suited for generating 4D images of the cardiac cycle, allowing for
continuous and progressive visualization of anatomical deformations throughout the
cardiac cycle. This model relies on a structure similar to 3D UNet, with skip
connections to preserve essential spatial information. This architecture helps
generate high-quality volumetric images. It includes a Deformation Module based
on VoxelMorph-1that generates deformation fields in 3D images. This module
enables smooth deformation between the different phases of the cardiac cycle.
Scan to scan without segmentation.
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(Campello et al., 2022): This study presented a Conditional GAN (cGAN) for
synthesizing heart scans of different ages using only cross-sectional data. The used
CcGAN architecture is based on a U-Net architecture with residual blocks and
attention mechanisms. The model is conditioned by age and body mass index (BMI)
to adjust images according to these covariates. A Wasserstein-GAN algorithm with
gradient penalty (WGAN-GP) is used to stabilize training.

* Labled

(Ossenberg-Engels and Grau, 2020) : The authors proposed a Conditional
Generative Adversarial Network to predict cardiac deformation between end-
diastolic (ED) and end-systolic (ES) frames. Using the UK Biobank dataset, their
model learned a deterministic mapping between ED and ES short-axis frames,
enabling the modeling of cardiac sequences and the functional behavior of the
heart. This learning helped to increase the data by transforming the scans from
each phase to the other one respecting their corresponding semantic labels.

(Al Khalil et al., 2022): This framework, trained on the M&Ms dataset, focuses on
right ventricle segmentation and integrates three key components: Detection of the
region of interest (ROI) by cropping the image to center the heart within the field of
view (FOV), image synthesis through the application of a mask-conditional GAN that
learns the mapping from segmentation labels to corresponding realistic images. The
application of random elastic deformation, morphological dilation, and erosion to
the labels to generate anatomical variations of the heart, including pathological
cases. Finally, a modified U-Net network was proposed to enhance cardiac
segmentation through the integration of both real and synthetic images.

(Al Khalil et al., 2023): The authors proposed a conditional synthesis approach using
GANs to generate realistic cardiac MRl images in the short-axis view. This study is
based on three main steps: image synthesis, a conditional synthesis approach
based on GANs is used to generate realistic cardiac MRI images in short-axis view.
The quality of these images is enhanced using labels of different tissues
surrounding the heart, generated by a multi-tissue segmentation network trained
on simulated XCAT-based images. This strategy helped the GAN to generate
coherent MRI scans of the heart and its surroundings. The next steps of their
framework consist of region of interest (ROI) detection and heart chamber
segmentation using the generated images to train a convolutional neural network
(CNN), based on a U-Net architecture, for heart chamber segmentation (right
ventricle, left ventricle and myocardium).
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(Diller et al., 2020): This study utilized cardiac MRIs from patients with Tetralogy of
Fallot to develop and compare segmentation models. Progressive GANs (PG- GANs)
are trained, on the collected data sourced from 14 German centers, to generate
synthetic MRI frames. The synthetized frames were manually segmented to create
training data for a U-Net based segmentation model. To evaluate the quality of
synthetic data a random selection of 200 PG-GAN-generated images and 200
original MRI images was submitted to human investigators who had to identify the
PG-GAN-generated image which reflected their realism.

(Amirrajab et al., 2022): This study introduced a two-module framework for
generating high-fidelity cardiac MR images. The first module utilizes a U-Net model
for multi-tissue segmentation of cardiac MR images. The output of this module is a
segmentation mask that labels various tissues, including the myocardium (MYO),
right ventricle (RV), and left ventricle (LV). These segmentation masks serve as
input labels for generating new images using a cGAN trained on M&Ms dataset,
which produces realistic cardiac MR images based on the anatomical structures
encoded in the segmentation masks. The simulated anatomies of virtual subjects
are derived from the 4D XCAT phantoms, and the images are simulated through a
physics-based simulation tool that implements the Bloch equations for cine studies.

(Kim and Ye, 2022): DiffuseMorph is an unsupervised model for deformable image
registration using diffusion models. Image registration aims to align multiple images
taken from different angles or at different time points by deforming them to match
a reference image or atlas. DiffuseMorph achieves deformable image registration in
an unsupervised manner by utilizing a diffusion model. The training is based on
ACDC benchmarks. These data were resampled, normalized, and cropped to fit the
model.

(Amirrajab et al., 2020): This study proposed a method with two different
configurations one using only the ground truth annotations available for the heart
and another increasing the number of labels into 8 classes encompassing the
organs surrounding the heart when training the XCAT-GAN model. Their pipeline is
composed of three cascaded models: (1) a modified version of UNet that predicts
multi-tissue segmentation maps from real images, used only in 8-class image
synthesis. (2) a conditional GAN architecture trained on pairs of real images and
label maps (4 or 8 classes) to generate synthetic images based on XCAT labels. (3)
an adapted version of U-Net in 2D, used to evaluate new synthetic images and their
corresponding labels in various experimental scenarios including only valid ones in
the augmented training dataset.
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(Abbasi-Sureshjani et al., 2020): The authors proposed a GAN-based approach for
synthesizing 4D (3D+t) cardiac MR images, using the 4D XCAT model as ground
truth. To preserve the spatial and semantic information of the reference anatomy,
they used the SPADE (Semantic Image Synthesis with Spatially Adaptive
Normalization) model originally proposed for semantic controlled generation. For
training, they used images from the ACDC database with their corresponding
segmentation masks. During inference, they replace the segmentation masks with
voxelated 4D labels from the XCAT to generate new 4D MRI images.

(Lustermans et al., 2022): This work aimed to improve cardiac MRI scan
segmentation with late contrast (LGE), particularly in contexts with limited data
sets. The first approach involves dividing the segmentation task into simpler sub-
problems, and the second relies on the use of synthetic data to increase the amount
of data available. A cascade pipeline method has been proposed, comprising three
deep-based blocks. The first identifies the left ventricle, the second delineates the
left ventricular myocardium, and the third segments the regions of myocardial
infarction. The segmentation-conditioned synthetic data generator (using a GAN)
was used to augment the training data. The study also showed that augmentation
by synthetic data improves scar segmentation, particularly in challenging datasets
with noise and artifacts.

(Skandarani et al., 2020): This paper proposed a model to produce highly realistic
MRI images (100k) with pixel-accurate ground truth for cardiac segmentation in
cine-MR combining Variational Autoencoder (VAE) with SPADE-GAN. VAE network is
trained to learn the latent representations of cardiac shapes, enabling the model to
capture the variations in heart shapes across individuals. On the other hand,
SPADE-GAN generates realistic MR images based on an anatomical map input. The
GAN learns to generate images whose cardiac structures align with the shapes
generated by the VAE.

Figure 1 illustrates a mapping of the reviewed literature works based on their ability
to generate labelled scans and also depending on the required inputs (Scan,
Scan+Label, Label).
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Unlabeled Labeled
l Scan to Scan | l Label to Scan l

Yoon et al., 2023 [16] Abbasi-Sureshjani et al., 2020 [26]
Kim and Ye, 2022 [17] Ossenberg-Engels and Grau, 2020 [19] Lustermans et al., 2022 [27]
Campello et al., 2022 [18] Al Khalil et al., 2022 [20] Skandarani et al., 2020 [28]

Al Khalil et al., 2023b [21]
Diller et al., 2020[22]
Amirrajab et al., 2022 [23]
Kim et al., 2022 [24]

Amirrajab et al., 2020 [25]

Taxonomy of existing works in cardiac MRI segmentation.
5. Opening

Generative Al has enabled significant advances in the improvement of medical
image databases, particularly for rare or difficult-to-annotate cases, such as cardiac
MRI. However, beyond the generation of realistic and diverse images to train
segmentation models, many other applications are possible in this field, notably
decision-making through image classification, as well as temporal image synthesis
to study the evolution of cardiac pathologies over time, an important area in the
monitoring of patients with chronic cardiovascular diseases.

6. Conclusion:

The integration of generative Al into cardiac imaging, particularly for MRI
segmentation, represents an essential lever for cardiovascular management.
Techniques such as GANs, VAEs and diffusion models have demonstrated their
potential to generate realistic images and increase the diversity of training data,
while improving the accuracy of segmentation models. However, several challenges
remain, particularly regarding the quality of the images generated, their



MJ HI ’ Moroccan Journal of
Health and Innovation

generalizability to varied clinical populations and the need for high-quality
annotated data. As technology continues to advance, these models could not only
enrich available databases but also improve diagnostic and clinical outcomes. The
future of GAIl in cardiac MRI lies in better clinical integration, with particular
attention to model validation and adaptation to specific patient needs.
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