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Abstract: The integration of artificial intelligence (AI) has led to notable advancements in
medical imaging. However, this progress is limited by the lack of expert-annotated data,
particularly for rare pathologies, which hampers scientific research and the training of
machine learning models. Generative artificial intelligence meets this need by synthesizing
realistic images that correspond to ground-truth data, thereby increasing the data available
for training and evaluating Algorithms. In this review, we focus on the cardiac domain, and
more specifically on magnetic resonance imaging (MRI), which is an important tool in the
diagnosis of cardiac pathologies (the world’s leading cause of death). We examine various
generative AI methodologies, such as generative adversarial networks (GANs), variational
autoencoders (VAEs), and diffusion models, applied to cardiac MRI data. Furthermore, we
discuss the implications of these techniques in generating synthetic datasets, augmenting
rare pathological cases, and improving segmentation accuracy and diagnostic outcomes.
Finally, we highlight the challenges, limitations, and future directions of integrating
generative AI into cardiac MRI workflows, aiming to guide further research and clinical
translation.
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Introduction1.

Cardiac magnetic resonance imaging is an important modality in the diagnosis, intervention
and management of cardiovascular diseases which is one of the most common causes of
death in the world according to the world health organization (Jafari et al., 2023) . By
providing high-resolution images of the heart, accurate identification of anatomy, functions
and tissues characterization, it can identify cardiac pathologies such as myocardial
infarction, ischemic heart disease, cardiomyopathy, and congenital heart defects. The
application of cardiac MRI is based on the segmentation of heart structures and regions of
interest for analysis. However, manual segmentation is time-consuming and labor-intensive,
making it susceptible to inter-observer variability. This highlights the strong need for
automated segmentation methods (Kanakatte et al., 2022).

The integration of artificial intelligence (AI) into the automation of cardiac segmentation has
experienced significant advancements in recent years. In particular, the adoption of deep
learning techniques such as recurrent neural networks (RNNs) and convolutional neural
networks (CNNs), has revolutionized the field by achieving exceptional accuracy and
efficiency. These methods excelled over traditional algorithms in effectively delineating
complex anatomical structures and variations in cardiac magnetic resonance imaging (MRI)
data (Taraboulsi et al., 2023). Nevertheless, these models face significant challenges mainly
in terms of relying on a database with expert-annotation. Considering these limitations,
generative artificial intelligence can meet the need by generating realistic synthetic data,
thus increasing the diversity and quantity of available databases, while preserving
pathology-related characteristics. By leveraging techniques such as (GANs), (VAEs), and
diffusion models, generative AI can synthesize realistic cardiac MRI images with
corresponding ground-truth annotations. These synthetic datasets have the potential to
augment existing ones and enhance the training of segmentation algorithms. and improving
diagnostic accuracy by enabling more robust and diverse model development (Al Khalil et
al., 2023).

In this review, we aim to provide a comprehensive analysis of the role of generative AI in
cardiac MRI segmentation. We begin by outlining the different techniques of generative AI
followed by an exploration of state-of-the-art databases devoted to cardiac MRI semantic



segmentation. Next, we discuss the existing works in the literature and their contributions
to synthetic data. Finally, we examine the challenges and limitations of these approaches
and propose future directions to guide the integration of generative AI into cardiac MRI
workflows.

2. Background
Generative AI is an Artificial intelligence field that can generate realistic images, text and
sounds by using deep learning algorithms that are trained on large amounts of data.
Generative AI has seen tremendous growth in recent years and has been applied to a wide
range of practical and creative fields, from art and entertainment to healthcare and
engineering. We briefly introduce the different generative AI paradigms in the following.

Generative Adversarial Networks:

Presented by Goodfellow et al. in 2014 (Goodfellow et al., 2014) ,are a novel class of deep
learning techniques (a type of artificial intelligence algorithm). GANs consist of two models:
a discriminator D, which is tasked with distinguishing between real and fake images, and a
generator G, which learns to create realistic data through training. One type of GANs that is
widely used in medical imaging is Pix2Pix GAN that is designed for image-to-image
translation tasks. Pixel-to-pixel, indicating that the model operates on a pixel-level mapping
between input and output images. The goal is to learn a mapping between an input and a
corresponding output image. Pix2pix uses a conditional GAN architecture, where both
discriminator and generator are conditioned on the input image.  This adversarial training
process allows the model to learn to generate high-quality image transformations (Isola et
al., 2024).

Diffusion models:

Diffusion model is a class of deep learning models used for generating high-quality images
from text descriptions. The name comes from the idea of “diffusion” as a process of
gradually transforming noise into a desired output, and “stable” reflects the model’s ability
to produce consistent high-quality results(Rombach et al., 2022). Thanks to this iterative
denoising process, Stable Diffusion models reach higher quality than GANs. However, their
application in medical imaging remains limited due to the scarcity of training data with text
annotations and their high computational complexity.

VAE:



Is a deep learning model designed to generate data similar to the ground truth by
leveraging the principles of autoencoders. It consists of three main components: an encoder,
a decoder, and a loss function. The goal of VAE is to learn both an encoder and a decoder
that map data x to and from a continuous latent space z. The encoder receives an input
image and reduces it to a more compact vector in latent space, capturing the essential
features of the data. The decoder then processes this compressed vector to reconstruct it,
transforming it back into a format that facilitates prediction of the output image. This
process ensures that the data produced is very similar to the original data, while preserving
the diversity of the results (Kusner et al., 2025), (Kingma and Welling, 2013).

3. Dataset
Annotated datasets play a crucial role in the training and evaluation of GAI models. In the
context of CMRI datasets, it enables models to learn complex patterns and generate
realistic, high-quality results. This section (Table 1) presents some of the most popular
datasets available from CMRI.

Table 1 : Summary of available datasets of CMRI for semantic segmentation (Annex).

Reference Dataset Number of cases Citations Years

(Bernard et al., 2018) ACDC 100 train
50 test 1848 2018

(Campello et al., 2021) M&Ms 175 train
136 test 2020

(Perry et al., 2009) SCD 45 Cine 445 2009
(Kadish et al., 2009) LVSC 100 train 100 test 134 2011

(Petitjean et al., 2015) RVSC 16 train
32 test 264 2015

(Andreopoulos et al., 2007) York
University 33 Cine 393 2008

Applications of generative AI in cardiac MR imaging4.

The state of the art in GAI applications for cardiac MR imaging can be classified into two
main approaches: studies that focus exclusively on synthetic scan generation without pixel-
wise semantic labels, and those that integrate image generation with segmentation. The



following items briefly present the papers corresponding to each of these two approaches,
highlighting the main contributions.

Unlabeled MRI Scan generation

(Yoon et al., 2023): The Sequence-Aware Diffusion Model (SADM) was introduced for the
generation of longitudinal medical images, such as cardiac and brain MRIs. This model
learns to generate medical images from image sequences, considering their temporal order.
In this way, it can synthesize the last image of a cardiac cycle from the first image of that
cycle. The model was evaluated on public cardiac MRI data, using the ACDC database.

(Kim and Ye, 2022): This study proposed a model for generating 4D cardiac cycle images,
enabling the visualization of continuous anatomical changes. This model is particularly
suited for generating 4D images of the cardiac cycle, allowing for continuous and
progressive visualization of anatomical deformations throughout the cardiac cycle. This
model relies on a structure similar to 3D UNet, with skip connections to preserve essential
spatial information. This architecture helps generate high-quality volumetric images. It
includes a Deformation Module based on VoxelMorph-1that generates deformation fields in
3D images. This module enables smooth deformation between the different phases of the
cardiac cycle. Scan to scan without segmentation.

(Campello et al., 2022): This study presented a Conditional GAN (cGAN) for synthesizing
heart scans of different ages using only cross-sectional data. The used cGAN architecture is
based on a U-Net architecture with residual blocks and attention mechanisms. The model is
conditioned by age and body mass index (BMI) to adjust images according to these
covariates. A Wasserstein-GAN algorithm with gradient penalty (WGAN-GP) is used to
stabilize training.

Labled

(Ossenberg-Engels and Grau, 2020) : The authors proposed a Conditional Generative
Adversarial Network to predict cardiac deformation between end-diastolic (ED) and end-
systolic (ES) frames. Using the UK Biobank dataset, their model learned a deterministic
mapping between ED and ES short-axis frames, enabling the modeling of cardiac sequences
and the functional behavior of the heart. This learning helped to increase the data by
transforming the scans from each phase to the other one respecting their corresponding
semantic labels.

(Al Khalil et al., 2022): This framework, trained on the M&Ms dataset, focuses on right



ventricle segmentation and integrates three key components: Detection of the region of
interest (ROI) by cropping the image to center the heart within the field of view (FOV),
image synthesis through the application of a mask-conditional GAN that learns the mapping
from segmentation labels to corresponding realistic images. The application of random
elastic deformation, morphological dilation, and erosion to the labels to generate anatomical
variations of the heart, including pathological cases. Finally, a modified U-Net network was
proposed to enhance cardiac segmentation through the integration of both real and
synthetic images.

(Al Khalil et al., 2023): The authors proposed a conditional synthesis approach using GANs
to generate realistic cardiac MRI images in the short-axis view. This study is based on three
main steps: image synthesis, a conditional synthesis approach based on GANs is used to
generate realistic cardiac MRI images in short-axis view. The quality of these images is
enhanced using labels of different tissues surrounding the heart, generated by a multi-tissue
segmentation network trained on simulated XCAT-based images. This strategy helped the
GAN to generate coherent MRI scans of the heart and its surroundings. The next steps of
their framework consist of region of interest (ROI) detection and heart chamber
segmentation using the generated images to train a convolutional neural network (CNN),
based on a U-Net architecture, for heart chamber segmentation (right ventricle, left
ventricle and myocardium).

(Diller et al., 2020): This study utilized cardiac MRIs from patients with Tetralogy of Fallot
to develop and compare segmentation models. Progressive GANs (PG- GANs) are trained, on
the collected data sourced from 14 German centers, to generate synthetic MRI frames. The
synthetized frames were manually segmented to create training data for a U-Net based
segmentation model. To evaluate the quality of synthetic data a random selection of 200 PG-
GAN-generated images and 200 original MRI images was submitted to human investigators
who had to identify the PG-GAN-generated image which reflected their realism.

(Amirrajab et al., 2022): This study introduced a two-module framework for generating high-
fidelity cardiac MR images. The first module utilizes a U-Net model for multi-tissue
segmentation of cardiac MR images. The output of this module is a segmentation mask that
labels various tissues, including the myocardium (MYO), right ventricle (RV), and left
ventricle (LV). These segmentation masks serve as input labels for generating new images
using a cGAN trained on M&Ms dataset, which produces realistic cardiac MR images based
on the anatomical structures encoded in the segmentation masks. The simulated anatomies
of virtual subjects are derived from the 4D XCAT phantoms, and the images are simulated
through a physics-based simulation tool that implements the Bloch equations for cine
studies.



(Kim and Ye, 2022): DiffuseMorph is an unsupervised model for deformable image
registration using diffusion models. Image registration aims to align multiple images taken
from different angles or at different time points by deforming them to match a reference
image or atlas.  DiffuseMorph achieves deformable image registration in an unsupervised
manner by utilizing a diffusion model. The training is based on ACDC benchmarks. These
data were resampled, normalized, and cropped to fit the model.

(Amirrajab et al., 2020): This study proposed a method with two different configurations one
using only the ground truth annotations available for the heart and another increasing the
number of labels into 8 classes encompassing the organs surrounding the heart when
training the XCAT-GAN model. Their pipeline is composed of three cascaded models: (1) a
modified version of UNet that predicts multi-tissue segmentation maps from real images,
used only in 8-class image synthesis. (2) a conditional GAN architecture trained on pairs of
real images and label maps (4 or 8 classes) to generate synthetic images based on XCAT
labels. (3) an adapted version of U-Net in 2D, used to evaluate new synthetic images and
their corresponding labels in various experimental scenarios including only valid ones in the
augmented training dataset.

(Abbasi-Sureshjani et al., 2020): The authors proposed a GAN-based approach for
synthesizing 4D (3D+t) cardiac MR images, using the 4D XCAT model as ground truth. To
preserve the spatial and semantic information of the reference anatomy, they used the
SPADE (Semantic Image Synthesis with Spatially Adaptive Normalization) model originally
proposed for semantic controlled generation. For training, they used images from the ACDC
database with their corresponding segmentation masks. During inference, they replace the
segmentation masks with voxelated 4D labels from the XCAT to generate new 4D MRI
images.

(Lustermans et al., 2022): This work aimed to improve cardiac MRI scan segmentation with
late contrast (LGE), particularly in contexts with limited data sets. The first approach
involves dividing the segmentation task into simpler sub-problems, and the second relies on
the use of synthetic data to increase the amount of data available. A cascade pipeline
method has been proposed, comprising three deep-based blocks. The first identifies the left
ventricle, the second delineates the left ventricular myocardium, and the third segments the
regions of myocardial infarction. The segmentation-conditioned synthetic data generator
(using a GAN) was used to augment the training data. The study also showed that
augmentation by synthetic data improves scar segmentation, particularly in challenging
datasets with noise and artifacts.

(Skandarani et al., 2020): This paper proposed a model to produce highly realistic MRI



images (100k) with pixel-accurate ground truth for cardiac segmentation in cine-MR
combining Variational Autoencoder (VAE) with SPADE-GAN. VAE network is trained to learn
the latent representations of cardiac shapes, enabling the model to capture the variations in
heart shapes across individuals. On the other hand, SPADE-GAN generates realistic MR
images based on an anatomical map input. The GAN learns to generate images whose
cardiac structures align with the shapes generated by the VAE.

Figure 1 illustrates a mapping of the reviewed literature works based on their ability to
generate labelled scans and also depending on the required inputs (Scan, Scan+Label,
Label).

Taxonomy of existing works in cardiac MRI segmentation.

Opening5.

Generative AI has enabled significant advances in the improvement of medical image
databases, particularly for rare or difficult-to-annotate cases, such as cardiac MRI.
However, beyond the generation of realistic and diverse images to train segmentation
models, many other applications are possible in this field, notably decision-making through
image classification, as well as temporal image synthesis to study the evolution of cardiac



pathologies over time, an important area in the monitoring of patients with chronic
cardiovascular diseases.

Conclusion:6.

The integration of generative AI into cardiac imaging, particularly for MRI segmentation,
represents an essential lever for cardiovascular management. Techniques such as GANs,
VAEs and diffusion models have demonstrated their potential to generate realistic images
and increase the diversity of training data, while improving the accuracy of segmentation
models. However, several challenges remain, particularly regarding the quality of the
images generated, their generalizability to varied clinical populations and the need for high-
quality annotated data. As technology continues to advance, these models could not only
enrich available databases but also improve diagnostic and clinical outcomes. The future of
GAI in cardiac MRI lies in better clinical integration, with particular attention to model
validation and adaptation to specific patient needs.

Acknowledgements

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References :

Andreopoulos and J. K. Tsotsos, “Efficient and generalizable statistical models of shape10.
and appearance for analysis of cardiac MRI,” Med Image Anal, vol. 12, no. 3, pp.
335–357, Jun. 2008, doi: 10.1016/j.media.2007.12.003.
H. Kadish et al., “Rationale and Design for the Defibrillators To Reduce Risk By11.
Magnetic Resonance Imaging Evaluation (DETERMINE) Trial,” J Cardiovasc
Electrophysiol, vol. 20, no. 9, pp. 982–987, Sep. 2009, doi:
10.1111/j.1540-8167.2009.01503.x.
Kanakatte, D. Bhatia, and A. Ghose, “3D Cardiac Substructures Segmentation from12.
CMRI using Generative Adversarial Network (GAN),” in 2022 44th Annual
International Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), Jul. 2022, pp. 1698–1701. doi: 10.1109/EMBC48229.2022.9871950.
Kim and J. C. Ye, “Diffusion Deformable Model for 4D Temporal Medical Image13.
Generation,” in Medical Image Computing and Computer Assisted Intervention –
MICCAI 2022, L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, and S. Li, Eds., Cham:
Springer Nature Switzerland, 2022, pp. 539–548. doi: 10.1007/978-3-031-16431-6_51.
Kim, I. Han, and J. C. Ye, “DiffuseMorph: Unsupervised Deformable Image Registration14.



Using Diffusion Model,” Sep. 29, 2022, arXiv: arXiv:2112.05149. doi:
10.48550/arXiv.2112.05149.
Petitjean et al., “Right ventricle segmentation from cardiac MRI: A collation study,”15.
Medical Image Analysis, vol. 19, no. 1, pp. 187–202, Jan. 2015, doi:
10.1016/j.media.2014.10.004.
R. P. R. M. Lustermans, S. Amirrajab, M. Veta, M. Breeuwer, and C. M. Scannell,16.
“Optimized automated cardiac MR scar quantification with GAN‐based data
augmentation,” Computer Methods and Programs in Biomedicine, vol. 226, p. 107116,
Nov. 2022, doi: 10.1016/j.cmpb.2022.107116.

G.-P. Diller et al., “Utility of deep learning networks for the generation of artificial cardiac
magnetic resonance images in congenital heart disease,” BMC Med Imaging, vol. 20, p. 113,
Oct. 2020, doi: 10.1186/s12880-020-00511-1.

Goodfellow et al., “Generative Adversarial Nets,” in Advances in Neural Information2014.
Processing Systems, Curran Associates, Inc., 2014. Accessed: Dec. 23, 2024. [Online].
Available:
https://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c9
7b1afccf3-Abstract.html
El-Taraboulsi, C. P. Cabrera, C. Roney, and N. Aung, “Deep neural network2015.
architectures for cardiac image segmentation,” Artificial Intelligence in the Life
Sciences, vol. 4, p. 100083, Dec. 2023, doi: 10.1016/j.ailsci.2023.100083.
Ossenberg-Engels and V. Grau, “Conditional Generative Adversarial Networks for the2016.
Prediction of Cardiac Contraction from Individual Frames,” in Statistical Atlases and
Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy
and LV Full Quantification Challenges, M. Pop, M. Sermesant, O. Camara, X. Zhuang,
S. Li, A. Young, T. Mansi, and A. Suinesiaputra, Eds., Cham: Springer International
Publishing, 2020, pp. 109–118. doi: 10.1007/978-3-030-39074-7_12.
S. Yoon, C. Zhang, H.-I. Suk, J. Guo, and X. Li, “SADM: Sequence-Aware Diffusion2017.
Model for Longitudinal Medical Image Generation,” vol. 13939, 2023, pp. 388–400.
doi: 10.1007/978-3-031-34048-2_30.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar Variational Autoencoder,”1954.
in Proceedings of the 34th International Conference on Machine Learning, PMLR, Jul.
2017, pp. 1945–1954. Accessed: Jan. 02, 2025. [Online]. Available:
https://proceedings.mlr.press/v70/kusner17a.html



Jafari et al., “Automated diagnosis of cardiovascular diseases from cardiac magnetic1955.
resonance imaging using deep learning models: A review,” Computers in Biology and
Medicine, vol. 160, p. 106998, Jun. 2023, doi: 10.1016/j.compbiomed.2023.106998.
Bernard et al., “Deep Learning Techniques for Automatic MRI Cardiac Multi-1956.
Structures Segmentation and Diagnosis: Is the Problem Solved?,” IEEE Transactions
on Medical Imaging, vol. 37, no. 11, pp. 2514–2525, Nov. 2018, doi:
10.1109/TMI.2018.2837502.
Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-To-Image Translation With1957.
Conditional Adversarial Networks,” presented at the Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 1125–1134.
Accessed: Dec. 24, 2024. [Online]. Available:
https://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translat
ion_With_CVPR_2017_paper.html
Perry, L. Yingli, C. Kim, P. Gideon, A. J. Dick, and G. A. Wright, “Evaluation Framework1958.
for Algorithms Segmenting Short Axis Cardiac MRI.,” The MIDAS Journal, Jul. 2009,
doi: 10.54294/g80ruo.
Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-Resolution Image1959.
Synthesis With Latent Diffusion Models,” presented at the Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp.
10684–10695. Accessed: Dec. 24, 2024. [Online]. Available:
https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Ima
ge_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html
Abbasi-Sureshjani, S. Amirrajab, C. Lorenz, J. Weese, J. Pluim, and M. Breeuwer, “4D1960.
Semantic Cardiac Magnetic Resonance Image Synthesis on XCAT Anatomical Model,”
May 20, 2020, arXiv: arXiv:2002.07089. doi: 10.48550/arXiv.2002.07089.
Amirrajab et al., “XCAT-GAN for Synthesizing 3D Consistent Labeled Cardiac MR1961.
Images on Anatomically Variable XCAT Phantoms,” Jul. 31, 2020, arXiv:
arXiv:2007.13408. doi: 10.48550/arXiv.2007.13408.
Amirrajab, Y. Al Khalil, C. Lorenz, J. Weese, J. Pluim, and M. Breeuwer, “Label-1962.
informed cardiac magnetic resonance image synthesis through conditional generative
adversarial networks,” Computerized Medical Imaging and Graphics, vol. 101, p.
102123, Oct. 2022, doi: 10.1016/j.compmedimag.2022.102123.
M. Campello et al., “Cardiac aging synthesis from cross-sectional data with conditional1963.
generative adversarial networks,” Front. Cardiovasc. Med., vol. 9, Sep. 2022, doi:
10.3389/fcvm.2022.983091.
M. Campello et al., “Multi-Centre, Multi-Vendor and Multi-Disease Cardiac1964.
Segmentation: The M&Ms Challenge,” IEEE Transactions on Medical Imaging, vol. 40,
no. 12, pp. 3543–3554, Dec. 2021, doi: 10.1109/TMI.2021.3090082.



Al Khalil, S. Amirrajab, C. Lorenz, J. Weese, J. Pluim, and M. Breeuwer, “On the1965.
usability of synthetic data for improving the robustness of deep learning-based
segmentation of cardiac magnetic resonance images,” Medical Image Analysis, vol. 84,
p. 102688, Feb. 2023, doi: 10.1016/j.media.2022.102688.
Al Khalil, S. Amirrajab, C. Lorenz, J. Weese, J. Pluim, and M. Breeuwer, “On the1966.
usability of synthetic data for improving the robustness of deep learning-based
segmentation of cardiac magnetic resonance images,” Medical Image Analysis, vol. 84,
p. 102688, Feb. 2023, doi: 10.1016/j.media.2022.102688.
Al Khalil, S. Amirrajab, J. Pluim, and M. Breeuwer, “Late Fusion U-Net with GAN-1967.
Based Augmentation for Generalizable Cardiac MRI Segmentation,” in Statistical
Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-
Center Right Ventricular Segmentation in Cardiac MRI Challenge, vol. 13131, E. Puyol
Antón, M. Pop, C. Martín-Isla, M. Sermesant, A. Suinesiaputra, O. Camara, K. Lekadir,
and A. Young, Eds., in Lecture Notes in Computer Science, vol. 13131. , Cham:
Springer International Publishing, 2022, pp. 360–373. doi:
10.1007/978-3-030-93722-5_39.
Skandarani, N. Painchaud, P.-M. Jodoin, and A. Lalande, “On the effectiveness of GAN1968.
generated cardiac MRIs for segmentation,” May 22, 2020, arXiv: arXiv:2005.09026.
doi: 10.48550/arXiv.2005.09026.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all
publications are solely those of the individual

author(s) and contributor(s) and not of MJHI and/or the editor(s). MJHI and/or the editor(s)
disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in
the content.


