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Editorial: Precision, Progress, and the Future of Medicine

Moroccan Journal of Health and Innovation (MJHI) — Volume 1, No 2

The Moroccan Journal of Health and Innovation (MJHI), a scientific platform that emerged
from the 3rd International Conference on Biomedical Engineering and Science (ICBES), which
took place during the 4th Rencontre Biomédicale (RMB) of the Moroccan Biomedical Society
(SMB) in Marrakech from February 20 to 22, 2025, is pleased to present its second issue of

Volume 1.

The multidisciplinary convergence of clinical technology evaluation, artificial intelligence, and
biological innovation fields that are altering the parameters of contemporary healthcare is
reflected in this issue. The five chosen articles provide an engaging look at Morocco's and other

countries' ever-changing research environment.

A very unique work on three-dimensional human hearing modeling using the finite element
approach opens the issue. The authors replicate the mechanical behavior of the auditory system
by integrating bone, cartilage, skin, and the tympanic membrane, going beyond traditional
models. In addition to advancing anatomical teaching, this study establishes the foundation for

upcoming biomechanical and audiological applications.

Two papers explore how artificial intelligence is affecting medical imaging, with a focus on
deep learning's diagnostic potential. A cutting-edge analysis of generative Al methods,
including diffusion models, GANs, and VAEs, applied to cardiac MRI is the first. This study
demonstrates how the lack of annotated datasets can be addressed and how improving
diagnostic precision in cardiology—still the leading cause of death worldwide may be achieved

through the creation of synthetic data.

The use of deep learning, particularly convolutional neural networks (CNNs), in the detection
of brain tumors is reviewed in the second Al-focused contribution. The authors evaluate the
effectiveness of several CNN models across multiple imaging modalities and datasets by
conducting a thorough evaluation of studies conducted between 2020 and 2024. Their results
highlight the advancements as well as the remaining obstacles in the pursuit of accurate, real-

time tumor identification.



An empirical assessment of CNN's performance in medical picture categorization is included
in a different publication to supplement this review. The work validates the reliability of CNNs
as instruments to assist clinical decision-making, particularly in environments with limited

resources, by assessing the models' accuracy and loss during multiple training epochs.

The issue concludes with a critical analysis of the accuracy of glucometers that are often used
in Morocco. The authors compare the readings from these devices to those from a recognized
laboratory after testing them under various biological interferences. Despite frequently
overestimating blood glucose levels by 22%, the glucometers maintained a strong correlation
with laboratory data (r = 0.95), confirming their usefulness for glycemic monitoring—as long

as calibration standards are strengthened before being distributed.

When taken as a whole, these contributions show a thriving ecosystem of research where local
problems lead to internationally applicable answers and where technology advances both
science and medical care. Inspiring academics, clinicians, and innovators to pursue cooperative,

significant work in health and biomedical science is our goal with this issue of MJHI

We would like to thank all of the authors, reviewers, and conference attendees for their hard
work and priceless input. With every issue of MJHI, which has only just begun, we renew our
dedication to promoting scientific quality, encouraging innovation, and elevating Moroccan

research internationally.

Pr. Dr. Hicham CHATOUI

Editor-in-Chief & Publication Director

Moroccan Journal of Health and Innovation (MJHI)
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Abstract: Brain tumors are a major global health challenge and one of the leading causes of death worldwide. Early
detection is critical to improving survival. However, obtaining reliable and accurate results remains a significant
challenge, even when utilizing high-quality brain imaging techniques. Diagnosing a brain tumor is often a lengthy process
that requires extensive radiological expertise. In this context, using deep learning, particularly convolutional neural
networks (CNNs), is a promising approach for improving both the accuracy and the efficiency of the diagnosis of brain
tumors. This review analyses studies published between 2020 and 2024 on deep learning techniques to identify and
categorize brain tumors. It also highlights the variety of methodologies and algorithms that have been put forth and
evaluates the diverse applications of deep learning. In addition to publicly available datasets, it examines radiological
imaging techniques. The aim of this study is to evaluate the effectiveness of different deep learning models in the
identification and categorization of brain tumors from medical scans. Furthermore, the review highlights notable advances
in the field and underscores crucial gaps.
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1. Introduction

Brain tumors are a major global health problem, accounting for more than 300,000 cases each year,
according to the World Health Organization (WHO). They have increasing incidence rates worldwide
(Arulmani et al., 2024). This makes early diagnosis a necessity to prevent their prevalence. Machine
learning and deep learning can help diagnose and prevent brain tumors. Deep learning algorithms
are the most preferred due to their high performance.

Brain tumors can be divided into two main categories (Arulmani et al., 2024): primary tumors, formed
in the brain, and metastatic tumors, originating in other parts of the body and four times more frequent.
Primary tumors are either glial or non-glial, benign or malignant. The WHO has classified tumors
into 4 grades according to their malignancy, growth and histological characteristics. Grade 1 tumors
are benign, growing slowly and often treatable by surgery. Grade 2 tumors, though benign, may
involve neighboring tissues and recur at a higher grade. Grade 3 tumors, which are malignant,
propagate rapidly and require treatments such as chemotherapy. Grade 4 tumors, the most aggressive,
spread rapidly, recur frequently and require combined therapies.

Brain tumors can be classified according to how they grade, as follows (Kim and Lee, 2022):
Craniopharyngiomas, which are benign but difficult to remove because of their proximity to critical
structures such as the pituitary gland, are a type of low-grade brain tumor (grades I and II).
Chordomas, rare malignancies, typically affect the axial bones and require targeted radiation therapies
such as carbon ion or proton therapy. Gangliogliomas and gangliocytomas, often associated with
seizures, develop in the temporal lobes and are common in young adults. Schwannomas, benign
tumors of the peripheral nerves, are often treated with surgery or radiation, although vestibular
schwannomas can cause hearing loss. Pituitary adenomas and pineocytomas, which are usually
benign, occur in the pituitary gland and pineal gland, respectively, and are generally slow growing
and treatable. High-grade (grade III and IV) brain tumors include anaplastic astrocytomas, aggressive
malignancies that require surgery, radiation therapy, and chemotherapy. Anaplastic
oligodendrogliomas, which originate from myelin-producing cells, also require a multimodal
approach. Glioblastoma multiforme (GBM), the most malignant and aggressive form, is distinguished
by abnormal cells, necrotic areas, and new blood vessel formation. There is no standard treatment for
recurrent cases, but treatment typically includes surgery, radiation and chemotherapy.

The World Health Organization (WHO) classified malignant brain tumors as destructive and fatal
neoplasms with high mortality rates that affect all age groups (Xie et al., 2022). According to the
WHO, 9.6 million people worldwide die from brain tumors each year. Brain tumors are a common

and serious disease that significantly reduces the life expectancy of people of all genders and all age
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groups (Buabeng et al., 2024). Early detection and treatment are critical to prevent permanent organ
damage.

In the field of medical decision support, artificial intelligence (Al) is increasingly being used for
disease detection and accurate diagnosis, has made remarkable progress in recent years. Solving real-
world problems in different fields. Deep learning (DL), a branch of Al, is rapidly revolutionizing
several fields by successfully tackling complex challenges like natural language processing and image
recognition. Its powerful capabilities have also been applied to medicine, where DL models have
proven effective in a variety of applications.

This paper is structured as follows: Section 2 presents an overview of machine learning and deep
learning techniques used for brain tumor classification and detection. Section 3 discusses different
imaging modalities, datasets and selection criteria considered in this review. Section 4 provides a

performance analysis, while Section 5 concludes the study.

2. Literature review of brain tumor classification models

A wide range of machine learning and deep learning methods have been developed for brain tumor
image classification. In (Prabha and Singh, 2024), the authors used the EfficientNet family to
automatically detect and classify three types of brain tumors using magnetic resonance imaging
(MRI). Their study demonstrated the effectiveness of these architectures, achieving the following
accuracy rates 96.07% (EfficientNet-B0), 97.86% (EfficientNet-B1), 98.21% (EfficientNet-B2),
97.86% (EfficientNet-B3), 98.93% (EfficientNet-B4), 99.64% (EfficientNet-B5), 98.57%
(EfficientNet-B6) and 99.64% (EfficientNet-B7).

In (Tiwari et al., 2025), Raj Gaurang Tiwari et al. introduced the Adaptive Neuro-Fuzzy Inference
System-Fusion-Deep Belief Network (ANFIS-F-DBN) model, which achieved an accuracy of
90.00%. In [13], the authors propose an automatic brain tumor diagnosis system that uses a
convolutional neural network (CNN) for both classification and segmentation of glioblastomas. Using
1,800 images from the BraTS 2017 dataset, their model achieved a maximum accuracy of 99%.

The study in (Ahmed et al.,, 2024) introduced a hybrid ViT-GRU model, where the Vision
Transformer (ViT) extracts essential features and the Gated Recurrent Unit (GRU) identifies
relationships between them. This approach effectively addresses class imbalance and outperforms
existing diagnostic methods. The model was trained using multiple optimizers, including SGD, Adam
and AdamW, and evaluated through rigorous 10-fold cross-validation. In addition, Explainable
Artificial Intelligence (XAI) techniques - such as Attention Maps, SHAP and LIME - were integrated
to improve interpretability. On the primary data set, BFrTMHD-2023, the model achieved its highest
accuracies with different optimisers: 81.66% (SGD), 96.56% (Adam) and 98.97% (AdamW). In
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(Alshuhail et al., 2024), the authors developed a deep learning based model using convolutional
neural networks (CNNs). The proposed model follows a sequential CNN architecture with multiple
convolutional, max-pooling and dropout layers followed by dense layers. This model achieved an
overall test accuracy of 98%, demonstrating a significant improvement in diagnostic accuracy.
Suganya Athisayamani et al (Alshuhail et al., 2025) used the AlexNet50 deep model for classification
using a discriminative learning method. Their approach consists of three learning stages: (1) feature
learning using the entire dataset, (2) training on an extended dataset while freezing certain AlexNet50
layers, and (3) further training on the extended dataset while leaving the frozen layers unchanged.
The method was tested on three publicly available MRI classification datasets. Several
hyperparameter optimisation techniques - including Adam, Stochastic Gradient Descent (SGD), Root
Mean Square Propagation (RMSprop), Adamax and AdamW - were used to evaluate the learning
process. The highest classification performance was achieved on the HWBA dataset with an average
accuracy of 98%.

In 2024, researchers have proposed a novel MRI-based brain tumor detection method that integrates
machine learning and deep learning techniques. MRI images were pre-processed using a median filter
combined with an adaptive contrast enhancement algorithm (ACEA) to improve image quality and
reduce noise. Segmentation was performed using a fuzzy c-means algorithm. Feature extraction was
based on the grey level co-occurrence matrix (GLCM), including energy, mean, entropy and contrast.
Classification was performed using the Ensemble Deep Neural Support Vector Machine (EDN-
SVM), which combines deep neural networks with SVMs. The model achieved 97.93% accuracy in
distinguishing between normal and abnormal brain tissue in MRI scans (Anantharajan et al., 2024).
Zelenak and collaborators have introduced the Brain Tumor Recognition using an Equilibrium
Optimizer with a Deep Learning Approach (BTR-EODLA) technique for MRI image analysis. This
method is designed for high accuracy brain tumor detection. The BTR-EODLA approach applies
median filtering (MF) to reduce noise in MRI scans, uses the squeeze-excitation ResNet (SE-
ResNet50) model for feature extraction, and uses the Equilibrium Optimizer (EO) to fine-tune model
parameters. A Stacked Autoencoder (SAE) is then used for tumor detection. Experimental results
showed an impressive accuracy of 98.78%, confirming the effectiveness of the proposed technique

(Zelenak et al., 2013).

3. Méthodologie

In this section, we present the criteria taken into account when selecting the papers chosen in the

present work, as well as different brain tumor detection datasets and medical imaging techniques.
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3.1. Selection criteria

The articles selected for this paper were searched using databases known for their coverage of medical
and deep learning related scientific publications. Specifically, we used PubMed, Google Scholar and
Scopus, which highlights the most recent and relevant research in medical imaging and artificial
intelligence. It includes only studies published between 2021 and 2025 that focus on leveraging deep
learning techniques for brain tumor detection and classification. Inclusion criteria were strictly
defined and included papers that applied deep learning models to medical images, including MRI and
PET scans.

3.2. Medical imaging techniques and datasets

3.2.1. Medical imaging techniques

A number of conventional methods have been used in the past for brain tumor imaging (Zelenak et
al., 2013), these include non-invasive and invasive imaging modalities such as x-rays, ultrasound,
computed tomography (CT) and magnetic resonance imaging (MRI). While X-rays played a pivotal
role in their early use, their low sensitivity led to the subsequent emergence of more advanced
techniques, such as CT and MRI. Ultrasound continues to find application in real-time intraoperative
monitoring, but its use has been largely supplanted by MRI-based neuronavigation. The use of CT is
effective in the detection of bone abnormalities and provides rapid imaging; furthermore, advanced
techniques such as CT angiography and perfusion imaging are now well established. MRI is
considered the gold standard in brain imaging; its unparalleled tissue contrast and detailed imaging
make it ideal for tumor assessment. However, it should be noted that CT is more widespread and

affordable than MRI.

3.2.2. Datasets

Researchers have used several MRI datasets for brain tumor classification. These include the Brain
Tumor Dataset (from Figshare or collected by the authors), the BRATS Dataset (especially
BRATS2015), and datasets available on Kaggle. These databases typically include classes such as
meningioma, glioma, pituitary, or tumor/non-tumor. MRI scans are often pre-processed (e.g. resized,
normalized, noise suppressed) before analysis. Researchers can collect data directly or get it from
public databases (like Figshare) and use it to classify images into categories of binary (tumor/non-
tumor) or multi-class (specific tumor types). Table 1 summarizes the dataset types used in the studies

included in this review.
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Table 1. datasets used in brain tumor classification.

Dataset Source Classes
) Figshare, Collected | Meningioma, Glioma, Pituitary, Tumor / Non-Tumor
Brain Tumor Dataset
by authors
High Grade Glioma,
BRATS Dataset BRATS2015
Low Grade Glioma
Figshare Dataset Figshare Meningioma, Glioma, Pituitary, Tumor / Non-Tumor
Kaggle Dataset Kaggle Cancerous, non-cancerous
MRI Images Glioma, Meningioma, Pituitary, Tumor / Non-Tumor
By authors
Collected
Brain MRI Images Various sources | Tumor / non-tumor

4. Performance analysis

Several methods stand out for their high accuracy, among the most effective approaches for brain tumor

classification. The EfficientNet family (Prabha and Singh, 2024), using the EfficientNet-B5 and B7

architectures, reached a maximum accuracy of 99.64%, demonstrating the effectiveness of these models in

MRI image analysis. The hybrid ViT-GRU model (Ahmed et al., 2024) achieved outstanding results, reaching

an accuracy of 98.97% through the integration of explicable Al techniques and hyper-parameter optimization.
Using classical architectures, AlexNet50 (Alshuhail et al., 2025) and a sequential CNN model (Alshuhail et
al., 2024) both achieved 98.00% accuracy. Another promising method, the BTR-EODLA model (Zelenak et

al., 2013), achieved an impressive 98.78% by combining preprocessing, features extraction and parameter

optimization.

Table 2. Performance comparison of the reviewed models (Annex).

Reference Number Method Accuracy (%)
(Prabha and Singh, 2024) | EfficientNet-B5/B7 99.64
(Ahmed et al., 2024) Hybrid ViT-GRU 98.97
(Alshuhail et al., 2024) Sequential CNN 98.00
(Alshuhail et al., 2025) AlexNet50 98.00
(Zelenak et al., 2013) BTR-EODLA 98.78
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5. Conclusion

A brain tumor is an irregular growth of brain tissue that interferes with the normal functioning of the brain.
The primary objective of medical imaging is to develop algorithms capable of extracting accurate and relevant
information while minimizing errors. The classification of brain tumors using MRI data is generally divided
into four main steps: pre-processing, image segmentation, feature extraction, and tumor classification.
However, achieving a fully autonomous system for clinical applications remains challenging due to the
variable appearance, irregular size, shape and nature of tumors. This study aims to provide an overview of
recent developments in brain tumor research, highlighting imaging techniques, summarising the WHO tumor
classification standards and examining the deep learning algorithms applied to brain tumor classification.
Compared to region growing methods and traditional machine learning approaches, deep learning techniques
offer notable advantages in automated detection and classification of brain tumors, mainly due to their
powerful feature learning capabilities. Although the contribution of DL techniques has been significant, the

need for a general technique is still an issue.
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Abstract: The integration of artificial intelligence (AI) has led to notable advancements in medical imaging. However,
this progress is limited by the lack of expert-annotated data, particularly for rare pathologies, which hampers scientific
research and the training of machine learning models. Generative artificial intelligence meets this need by synthesizing
realistic images that correspond to ground-truth data, thereby increasing the data available for training and evaluating
Algorithms. In this review, we focus on the cardiac domain, and more specifically on magnetic resonance imaging (MRI),
which is an important tool in the diagnosis of cardiac pathologies (the world’s leading cause of death). We examine
various generative Al methodologies, such as generative adversarial networks (GANS), variational autoencoders (VAEs),
and diffusion models, applied to cardiac MRI data. Furthermore, we discuss the implications of these techniques in
generating synthetic datasets, augmenting rare pathological cases, and improving segmentation accuracy and diagnostic
outcomes. Finally, we highlight the challenges, limitations, and future directions of integrating generative Al into cardiac

MRI workflows, aiming to guide further research and clinical translation.
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1. Introduction

Cardiac magnetic resonance imaging is an important modality in the diagnosis, intervention and
management of cardiovascular diseases which is one of the most common causes of death in the world
according to the world health organization (Jafari et al., 2023) . By providing high-resolution images
of the heart, accurate identification of anatomy, functions and tissues characterization, it can identify
cardiac pathologies such as myocardial infarction, ischemic heart disease, cardiomyopathy, and
congenital heart defects. The application of cardiac MRI is based on the segmentation of heart
structures and regions of interest for analysis. However, manual segmentation is time-consuming and
labor-intensive, making it susceptible to inter-observer variability. This highlights the strong need for

automated segmentation methods (Kanakatte et al., 2022).

The integration of artificial intelligence (Al) into the automation of cardiac segmentation has
experienced significant advancements in recent years. In particular, the adoption of deep learning
techniques such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs),
has revolutionized the field by achieving exceptional accuracy and efficiency. These methods
excelled over traditional algorithms in effectively delineating complex anatomical structures and
variations in cardiac magnetic resonance imaging (MRI) data (Taraboulsi et al., 2023). Nevertheless,
these models face significant challenges mainly in terms of relying on a database with expert-
annotation. Considering these limitations, generative artificial intelligence can meet the need by
generating realistic synthetic data, thus increasing the diversity and quantity of available databases,
while preserving pathology-related characteristics. By leveraging techniques such as (GANs),
(VAEs), and diffusion models, generative Al can synthesize realistic cardiac MRI images with
corresponding ground-truth annotations. These synthetic datasets have the potential to augment
existing ones and enhance the training of segmentation algorithms. and improving diagnostic

accuracy by enabling more robust and diverse model development (Al Khalil et al., 2023).

In this review, we aim to provide a comprehensive analysis of the role of generative Al in cardiac
MRI segmentation. We begin by outlining the different techniques of generative Al followed by an
exploration of state-of-the-art databases devoted to cardiac MRI semantic segmentation. Next, we
discuss the existing works in the literature and their contributions to synthetic data. Finally, we
examine the challenges and limitations of these approaches and propose future directions to guide the

integration of generative Al into cardiac MRI workflows.
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2. BACKGROUND

Generative Al is an Artificial intelligence field that can generate realistic images, text and sounds
by using deep learning algorithms that are trained on large amounts of data. Generative Al has seen
tremendous growth in recent years and has been applied to a wide range of practical and creative
fields, from art and entertainment to healthcare and engineering. We briefly introduce the different

generative Al paradigms in the following.

. Generative Adversarial Networks:

Presented by Goodfellow et al. in 2014 (Goodfellow et al., 2014) ,are a novel class of deep learning
techniques (a type of artificial intelligence algorithm). GANs consist of two models: a discriminator
D, which is tasked with distinguishing between real and fake images, and a generator G, which learns
to create realistic data through training. One type of GANs that is widely used in medical imaging is
Pix2Pix GAN that is designed for image-to-image translation tasks. Pixel-to-pixel, indicating that the
model operates on a pixel-level mapping between input and output images. The goal is to learn a
mapping between an input and a corresponding output image. Pix2pix uses a conditional GAN
architecture, where both discriminator and generator are conditioned on the input image. This
adversarial training process allows the model to learn to generate high-quality image transformations

(Isola et al., 2024).

. Diffusion models:

Diffusion model is a class of deep learning models used for generating high-quality images from
text descriptions. The name comes from the idea of "diffusion" as a process of gradually transforming
noise into a desired output, and "stable" reflects the model's ability to produce consistent high-quality
results(Rombach et al., 2022). Thanks to this iterative denoising process, Stable Diffusion models
reach higher quality than GANs. However, their application in medical imaging remains limited due

to the scarcity of training data with text annotations and their high computational complexity.

. VAE:

Is a deep learning model designed to generate data similar to the ground truth by leveraging the
principles of autoencoders. It consists of three main components: an encoder, a decoder, and a loss
function. The goal of VAE is to learn both an encoder and a decoder that map data x to and from a
continuous latent space z. The encoder receives an input image and reduces it to a more compact

vector in latent space, capturing the essential features of the data. The decoder then processes this
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compressed vector to reconstruct it, transforming it back into a format that facilitates prediction of
the output image. This process ensures that the data produced is very similar to the original data,

while preserving the diversity of the results (Kusner et al., 2025), (Kingma and Welling, 2013).
3. DATASET

Annotated datasets play a crucial role in the training and evaluation of GAI models. In the context
of CMRI datasets, it enables models to learn complex patterns and generate realistic, high-quality

results. This section (Table 1) presents some of the most popular datasets available from CMRI.

Table 1 : Summary of available datasets of CMRI for semantic segmentation (Annex).

Reference Dataset Number of cases Citations Years

(Bernard et al., 2018) ACDC 100 train 1848 2018
50 test

(Campello et al., 2021) M&Ms 175 train 2020
136 test

(Perry et al., 2009) SCD 45 Cine 445 2009

(Kadish et al., 2009) LVSC 100 train 100 test 134 2011

(Petitjean et al., 2015) RVSC 16 train 264 2015
32 test

(Andreopoulos et al., 2007) York 33 Cine 393 2008

University

4. APPLICATIONS OF GENERATIVE AI IN CARDIAC MR IMAGING

The state of the art in GAI applications for cardiac MR imaging can be classified into two main
approaches: studies that focus exclusively on synthetic scan generation without pixel-wise semantic
labels, and those that integrate image generation with segmentation. The following items briefly
present the papers corresponding to each of these two approaches, highlighting the main

contributions.

e  Unlabeled MRI Scan generation

(Yoon et al., 2023): The Sequence-Aware Diffusion Model (SADM) was introduced for the
generation of longitudinal medical images, such as cardiac and brain MRIs. This model learns to
generate medical images from image sequences, considering their temporal order. In this way, it can

synthesize the last image of a cardiac cycle from the first image of that cycle. The model was
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evaluated on public cardiac MRI data, using the ACDC database.

(Kim and Ye, 2022): This study proposed a model for generating 4D cardiac cycle images,
enabling the visualization of continuous anatomical changes. This model is particularly suited for
generating 4D images of the cardiac cycle, allowing for continuous and progressive visualization of
anatomical deformations throughout the cardiac cycle. This model relies on a structure similar to 3D
UNet, with skip connections to preserve essential spatial information. This architecture helps generate
high-quality volumetric images. It includes a Deformation Module based on VoxelMorph-1that
generates deformation fields in 3D images. This module enables smooth deformation between the

different phases of the cardiac cycle. Scan to scan without segmentation.

(Campello et al., 2022): This study presented a Conditional GAN (cGAN) for synthesizing heart
scans of different ages using only cross-sectional data. The used cGAN architecture is based on a U-
Net architecture with residual blocks and attention mechanisms. The model is conditioned by age and
body mass index (BMI) to adjust images according to these covariates. A Wasserstein-GAN

algorithm with gradient penalty (WGAN-GP) is used to stabilize training.

e Labled

(Ossenberg-Engels and Grau, 2020) : The authors proposed a Conditional Generative Adversarial
Network to predict cardiac deformation between end-diastolic (ED) and end-systolic (ES) frames.
Using the UK Biobank dataset, their model learned a deterministic mapping between ED and ES
short-axis frames, enabling the modeling of cardiac sequences and the functional behavior of the
heart. This learning helped to increase the data by transforming the scans from each phase to the other

one respecting their corresponding semantic labels.

(Al Khalil et al., 2022): This framework, trained on the M&Ms dataset, focuses on right ventricle
segmentation and integrates three key components: Detection of the region of interest (ROI) by
cropping the image to center the heart within the field of view (FOV), image synthesis through the
application of a mask-conditional GAN that learns the mapping from segmentation labels to
corresponding realistic images. The application of random elastic deformation, morphological
dilation, and erosion to the labels to generate anatomical variations of the heart, including
pathological cases. Finally, a modified U-Net network was proposed to enhance cardiac segmentation

through the integration of both real and synthetic images.
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(Al Khalil et al., 2023): The authors proposed a conditional synthesis approach using GANSs to
generate realistic cardiac MRI images in the short-axis view. This study is based on three main steps:
image synthesis, a conditional synthesis approach based on GANS is used to generate realistic cardiac
MRI images in short-axis view. The quality of these images is enhanced using labels of different
tissues surrounding the heart, generated by a multi-tissue segmentation network trained on simulated
XCAT-based images. This strategy helped the GAN to generate coherent MRI scans of the heart and
its surroundings. The next steps of their framework consist of region of interest (ROI) detection and
heart chamber segmentation using the generated images to train a convolutional neural network
(CNN), based on a U-Net architecture, for heart chamber segmentation (right ventricle, left ventricle

and myocardium).

(Diller et al., 2020): This study utilized cardiac MRIs from patients with Tetralogy of Fallot to
develop and compare segmentation models. Progressive GANs (PG- GANs) are trained, on the
collected data sourced from 14 German centers, to generate synthetic MRI frames. The synthetized
frames were manually segmented to create training data for a U-Net based segmentation model. To
evaluate the quality of synthetic data a random selection of 200 PG-GAN-generated images and 200
original MRI images was submitted to human investigators who had to identify the PG-GAN-

generated image which reflected their realism.

(Amirrajab et al., 2022): This study introduced a two-module framework for generating high-
fidelity cardiac MR images. The first module utilizes a U-Net model for multi-tissue segmentation of
cardiac MR images. The output of this module is a segmentation mask that labels various tissues,
including the myocardium (MYO), right ventricle (RV), and left ventricle (LV). These segmentation
masks serve as input labels for generating new images using a cGAN trained on M&Ms dataset,
which produces realistic cardiac MR images based on the anatomical structures encoded in the
segmentation masks. The simulated anatomies of virtual subjects are derived from the 4D XCAT
phantoms, and the images are simulated through a physics-based simulation tool that implements the

Bloch equations for cine studies.

(Kim and Ye, 2022): DiffuseMorph is an unsupervised model for deformable image registration
using diffusion models. Image registration aims to align multiple images taken from different angles
or at different time points by deforming them to match a reference image or atlas. DiffuseMorph
achieves deformable image registration in an unsupervised manner by utilizing a diffusion model.
The training is based on ACDC benchmarks. These data were resampled, normalized, and cropped to

fit the model.

Version July 25, 2025 submitted to MJHI https://mjhi-smb.com



Version July 25, 2025 submitted to Moroccan Journal of Health and Innovation (MJHI)

(Amirrajab et al., 2020): This study proposed a method with two different configurations one
using only the ground truth annotations available for the heart and another increasing the number of
labels into 8 classes encompassing the organs surrounding the heart when training the XCAT-GAN
model. Their pipeline is composed of three cascaded models: (1) a modified version of UNet that
predicts multi-tissue segmentation maps from real images, used only in 8-class image synthesis. (2)
a conditional GAN architecture trained on pairs of real images and label maps (4 or 8 classes) to
generate synthetic images based on XCAT labels. (3) an adapted version of U-Net in 2D, used to
evaluate new synthetic images and their corresponding labels in various experimental scenarios

including only valid ones in the augmented training dataset.

(Abbasi-Sureshjani et al., 2020): The authors proposed a GAN-based approach for synthesizing
4D (3D+t) cardiac MR images, using the 4D XCAT model as ground truth. To preserve the spatial
and semantic information of the reference anatomy, they used the SPADE (Semantic Image Synthesis
with Spatially Adaptive Normalization) model originally proposed for semantic controlled
generation. For training, they used images from the ACDC database with their corresponding
segmentation masks. During inference, they replace the segmentation masks with voxelated 4D labels

from the XCAT to generate new 4D MRI images.

(Lustermans et al., 2022): This work aimed to improve cardiac MRI scan segmentation with late
contrast (LGE), particularly in contexts with limited data sets. The first approach involves dividing
the segmentation task into simpler sub-problems, and the second relies on the use of synthetic data to
increase the amount of data available. A cascade pipeline method has been proposed, comprising
three deep-based blocks. The first identifies the left ventricle, the second delineates the left ventricular
myocardium, and the third segments the regions of myocardial infarction. The segmentation-
conditioned synthetic data generator (using a GAN) was used to augment the training data. The study
also showed that augmentation by synthetic data improves scar segmentation, particularly in

challenging datasets with noise and artifacts.

(Skandarani et al., 2020): This paper proposed a model to produce highly realistic MRI images
(100k) with pixel-accurate ground truth for cardiac segmentation in cine-MR combining Variational
Autoencoder (VAE) with SPADE-GAN. VAE network is trained to learn the latent representations
of cardiac shapes, enabling the model to capture the variations in heart shapes across individuals. On
the other hand, SPADE-GAN generates realistic MR images based on an anatomical map input. The

GAN learns to generate images whose cardiac structures align with the shapes generated by the VAE.

Figure 1 illustrates a mapping of the reviewed literature works based on their ability to generate
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labelled scans and also depending on the required inputs (Scan, Scan+Label, Label).

Generative MR images ]7

[ Unlabeled | ——{  Labeled }——
Scan to Scan Label to Scan

Yoon et al., 2023 [16] Abbasi-Sureshjani et al., 2020 [26]
Kim and Ye, 2022 [17] Ossenberg-Engels and Grau, 2020 [19] Lustermans et al., 2022 [27]
Campello et al., 2022 [18] Al Khalil et al., 2022 [20] Skandarani et al., 2020 [28]

Al Khalil et al., 2023b [21]
Diller et al., 2020[22]
Amirrajab et al., 2022 [23]

Kim et al., 2022 [24]

Amirrajab et al., 2020 [25]

Taxonomy of existing works in cardiac MRI segmentation.

5.0PENING

Generative Al has enabled significant advances in the improvement of medical image databases,
particularly for rare or difficult-to-annotate cases, such as cardiac MRI. However, beyond the
generation of realistic and diverse images to train segmentation models, many other applications are
possible in this field, notably decision-making through image classification, as well as temporal image
synthesis to study the evolution of cardiac pathologies over time, an important area in the monitoring

of patients with chronic cardiovascular diseases.

6.Conclusion:

The integration of generative Al into cardiac imaging, particularly for MRI segmentation, represents
an essential lever for cardiovascular management. Techniques such as GANs, VAEs and diffusion
models have demonstrated their potential to generate realistic images and increase the diversity of
training data, while improving the accuracy of segmentation models. However, several challenges
remain, particularly regarding the quality of the images generated, their generalizability to varied
clinical populations and the need for high-quality annotated data. As technology continues to advance,
these models could not only enrich available databases but also improve diagnostic and clinical

outcomes. The future of GAI in cardiac MRI lies in better clinical integration, with particular attention
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to model validation and adaptation to specific patient needs.
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Abstract: The three-dimensional modeling of the human ear has emerged as a relevant alternative to experiments
conducted on cadavers, owing to its accessibility while providing comparable benefits for students (Jenks et al., 2021).
Two primary methods for generating 3D computer models of the human ear are documented in the literature: the pCT
imaging method and the finite element method, which is based on a numerical approach.

The uCT (Micro-computed tomography) imaging approach involves performing high-resolution scans at a microscopic
scale of the human ear using X-rays, with the aim of reconstructing it in two or three dimensions. In contrast, the finite
element method employs documented dimensions and geometric shapes from existing literature to model the human ear
using work plans.

The present study will concentrate on the finite element method. It is imperative to acknowledge that most of the three-
dimensional models of the human ear cited in the extant literature do not account for bony and cartilaginous structures
(Gan et al., 2004), (Zhang and Gan, 2013), (Liu et al., 2022).

This research aims to develop a comprehensive three-dimensional model of the human external ear, which includes the
auditory canal, skin, bone, cartilage, and tympanic membrane. This model is intended to facilitate an examination of how
bone and cartilage influence the displacement of the umbo. In this constructed model, both the ossicular chain and cochlea
were substituted with a mechanical impedance represented by a mass-spring-damper system.

The findings from this study suggest that both bone and cartilage contribute to the displacement of the umbo within a
frequency range of 2500 to 6300 Hz.
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1. Introduction

The human ear serves as the organ responsible for auditory perception. Its primary function
encompasses the amplification, transmission, and conversion of acoustic waves from the environment
into electrical impulses that are subsequently interpreted by the brain through the auditory nerve. The
structure of the ear can be categorized into three distinct sections: the outer ear, which includes the
pinna and external auditory canal; the middle ear, consisting of the tympanic membrane and ossicular
chain (comprising malleus, incus, and stapes); and the inner ear, which incorporates both the vestibular

system and cochlea.

In the literature, two principal approaches are described for three-dimensional geometric modeling

of the human ear: one based on imaging scans and another grounded in finite element methods.

The imaging scan approach entails capturing high-resolution scans of the human ear at a microscopic
scale using X-rays to reconstruct its geometric shape in two or three dimensions. Conversely, the finite
element method relies on solving differential equations and utilizes documented dimensions and

geometric descriptions of the human ear found in literature to model its geometric form.

Regardless of the modeling approach employed, the three-dimensional (3D) modeling of the human
ear has emerged as a significant alternative to experiments conducted on cadavers, owing to its
accessibility while providing comparable benefits for students. In addition to its educational
contributions, 3D modeling of the human ear facilitates various studies regarding the functioning of

the auditory system, as well as examining the impact of auditory prosthetics on this system.

In the present study, we will concentrate on employing the finite element method for modeling
purposes. Existing literature reveals that the majority of three-dimensional models of the human ear
created using this methodology do not incorporate bony and cartilaginous tissues (Gan et al., 2004),

(Zhang and Gan, 2013), (Liu et al., 2022).

2. Finite element model

Our approach to creating the 3D human ear model involved the following. The auditory canal was
modeled using cross-sections with variable diameters and orientations (Figure 1.a). By applying the
loft operation to all the cross-sections defining the auditory canal, a 3D geometry of an "S$" shaped
canal was generated (Figure 1.b). Both parts of the tympanic membrane were modeled. Its geometry
is conical (Daphalapurkar et al., 2009), with a surface area of 123.5 mm?, a uniform thickness of 0.1

mm, a height of 1.7 mm (Lee et al., 2006), (Wever and Lawrence, 1954) (Figure 2.a), and it forms an

Version July 25, 2025 submitted to MJHI https://mjhi-smb.com



Version March 24, 2025 submitted to Moroccan Journal of Health and Innovation (MJHI) 3of6

inclination angle of 50 degrees with the auditory canal (Stinson and Lawton, 1989) (Figure 2.b). The
skin was modeled with a decreasing thickness ranging from 1 mm to 0.8 mm at the cartilaginous part
and from 0.8 mm to 0.5 mm at the bony part (Ballachanda, 2013), (Perry and Shelley, 1955),
(Brummund et al., 2014) (Figure 3.a). The cartilage was modeled over a length of 15 mm from the
entrance of the canal, exhibiting a decreasing thickness from 13.6 mm to 8 mm relative to the auditory
canal (Figure 3.b). The bone was modeled over the other half of the auditory canal, showing a varying

thickness from 6.9 mm to 8.8 mm relative to the auditory canal (Figure 3.c).
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Figure 1. Geometric model and dimensions of the auditory canal.
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Figure 2. Geometric model and dimensionsof the eardrum.
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Figure 3. Geometric model and dimensions of (a) the skin, (b) cartilage and (c) bone.

Figure 4. 3D model of the human ear.

3. Boundary conditions

For this study, the auditory canal was defined as a fluid domain filled with air. The skin, bone, cartilage,

and tympanic membrane were delineated as solid domains.

To restrict any movement in space, the tympanic ring, the circumferential boundaries of the skin, bone, and

cartilage were fixed using a fixed constraint displacement (ux=u,=u,=0).

The loading of the ear components located directly after the tympanic membrane (the malleus, incus, stapes
and cochlea) has been replaced by an equivalent mechanical impedance represented by a mass-spring-damper
system. For this mechanical impedance, the value of the spring constant ‘K’ and the friction coefficient ‘d’

used are respectively 120 N/m and 0.2 N-s/m.

A plane wave of 0.2 Pa corresponding to 80 dB was applied at the entrance of the auditory canal. The

interfaces between the solid domains and the auditory canal were expressed through acoustic-structural
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coupling.

Material properties

The materials’ properties have been taken from the literature and are presented in Table 1.

Table 1: Material properties of the proposed model

Young's Density
Poisson's ratio Loss factor
modulus (MPa) (kg/m®)
Bone Value 11316 1714 0.3 0.01
Reference (Shaw and (Shaw and (Delille et al., n/a
Stinson, 1981) Stinson, 1981) 2007)
Cartilage Value 7.2 1080 0.26 0.05
Reference (Peterson and (Grellmann et (Peterson and n/a
Dechow, 2003) al., 2006) Dechow, 2003)
Skin Value 0.5 1100 0.4 0.1
Reference (Cox and (Sarvazyan et n/a n/a
Peacock, 1979) al., 1995)
Tympanic Value 333 1200 0.3 -
membrane Reference (Cameron, 1991) | (Cameron, 1991) | n/a -

The auditory canal is defined as an air-filled domain with a density of pair = 1.20 kg/m? and a

speed of sound of cair = 343.2 m/s.

4. Results and interpretations

In this section, we will examine the impact of bone and cartilage on the displacement of the umbo.

Here, we examine two configurations. The first is that of a 3D model of the human ear, as described

in section 2. For reference, this foundational model comprises the auditory canal, cartilage, skin, bone,

and tympanic membrane. To investigate the influence of bone and cartilage on umbo displacement

within the proposed model, we removed the skin, bone, and cartilage from the proposed model.

Subsequently, we substituted the skin with a physiological impedance.

Version July 25, 2025 submitted to MJHI

https://mjhi-smb.com




Version March 24, 2025 submitted to Moroccan Journal of Health and Innovation (MJHI) 6 of 6

100
)
=]
— 10 =
g ;
=
Q
3
G
S
o 1 -
Ha) ]
g

|~ Model with cartilage and bone

| — Model without cartilage and bone

ol Koike et al. [2002]
100 ' 1000 | R

Frequency (Hz)
Figure 5. Umbo displacement at 80 dB SPL.

This figure presents the comparative results of the displacement of the umbo induced by an
acoustic pressure of 80 dB at the entrance of the ear canal. In this figure, we have the results of the
3D model of the human ear developed with or without bony and cartilaginous tissues, and the results

of Koike et al. (Koike et al., 2002).

First, we have a comparison between the results of the 3D model of the human ear developed when
the cartilaginous and bony tissues are taken into account or not. The comparison of these two results
highlights the effect of bone and cartilage on the displacement of the umbo. Indeed, we find that bony

and cartilaginous tissues have a frequency range of interest between 2500 and 6300 Hz.

Secondly, we have a comparison between the results of our model and those of Koike et al. (Koike
et al., 2002). This comparative study allows us first to validate the modeling approach, the geometric
dimensions, and the parameters used. Then, we observe that the results of the model taking into
account the bone and cartilage present a nearly similar trend to those of Koike et al. (Koike et al.,
2002). Although we have a shift in the peak of the maximum displacement of the umbo. Indeed,
Koike et al. obtained the maximum displacement around 1250 Hz, but with the 3D model of the
human ear with the bone and cartilage, the peak of the maximum displacement is observed around

2500 Hz. One of the reasons that could explain this shift might be the fact that Koike et al. (Koike et
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al., 2002) modeled the ossicular chain, the ligaments, and tendons of the middle ear and replaced the
cochlea with a mechanical impedance, whereas in our model, the ossicular chain and the cochlea were

represented by the impedance of a mass-spring-damper system.

5. Conclusion

This study aimed to develop a 3D human ear model to investigate how bony and cartilaginous
tissues influence umbo displacement. The model includes the auditory canal, bone, skin, cartilage,
and tympanic membrane (pars tensa and pars flaccida). The middle ear’s influence was accounted

for by replacing the ossicular chain and cochlea with an equivalent mass-spring-damper impedance.

Our findings indicate that bone and cartilage influence the response between 2500 and 6300 Hz.
A comparison with Koike et al. (Koike et al., 2002) revealed discrepancies at various frequencies,
which we attribute to differences in modeling methodology. Specifically, our model simplifies the
ossicular chain and cochlea into a mass-spring-damper impedance, whereas Koike et al. explicitly
modeled the ossicular chain, tendons, and ligaments while representing the cochlea with an
impedance. To enhance our model, future work will incorporate detailed modeling of the ossicular

chain, ligaments, tendons, and cochlea
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Abstract: This study aims to evaluate the reliability of the glucometers that are commonly used in Morocco, and to assess
the effect, on glycemia determination, of blood content of different substances reflecting various health and nutritional
conditions. One of four interferences (dextrose, EDTA, mannitol, or urea) was added, at one of four concentrations (0,
100, 200, or 300 mg/dL) to human blood containing one of two levels of glucose. Blood glucose (BG) was assayed in an
accredited private analysis laboratory and by glucometers, belonging to three brands. The different interferences, except
dextrose, did not affect BG. BG values of the glucometers were 22% higher than those of the lab (p<0.05), but highly
correlated with them (r=0.95, p<0.001). The glucometers used in Morocco are precise enough to be used to follow
glycemia evolution. However, they should be better calibrated before sale for a better accuracy that allows the exact BG

determination.
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1. Introduction

Diabetes is a common chronic disease, causing different complications (Heald et al., 2020). The
world prevalence of diabetes reached 9% (463 million adults) in 2019, due to a decreasing mortality
among diabetics, because of the improved medical care, and to increasing risk factors (Chan et al.,

2020; Magliano et al., 2019).

The approach of “Self-Monitoring of Blood Glucose” (SMBG) has been suggested by researchers
for burden reducing and cost-effectiveness improving (Kalatehjary et al., 2008; Lagarde et al., 2006).
SMBG is a process of Blood Glucose (BG) checking by the patients themselves, thereby increasing
their self-confidence (Bergenstal et al., 2005; Czupryniak et al., 2014). SMBG is commonly applied
three times a day (American Diabetes Association, 2016). The awareness of diabetic patients about
the advantages of SMBG has risen, so its utilization has rapidly increased in recent years (Gomes et
al., 2010). However, the precision and accuracy of SMBG devices are doubtful (Freckmann et al.,

2010), making it risky to rely on for a clinical decision (Van den Berghe et al., 2001).

This study aims to evaluate the precision and accuracy of the glucometers that are commonly used
in Morocco (OnCall Extra, CareSens, and GlucoLab brands), and to assess the effect, on BG
determination, of blood content of different substances (dextrose, EDTA, mannitol, and urea)

reflecting various health and nutritional conditions.

2. Material and methods

Approximately 200 mL of blood was collected, from 10 volunteers, in heparin tubes. Half of this
amount was centrifuged and frozen (this was the "High" blood). The other half ("Low" blood) was
left for 24 hours at room temperature (to allow glycolysis) and then centrifuged and frozen. The two

plasma pools were defrosted just before use. The volume of each pool was about 45 mL.

Plasma was distributed over test tubes. The first series of tubes, numbered 1 to 13, contained a
constant volume (2.5 mL) of High plasma. The second series (14 to 26) contained the same volume
(2.5 mL) of Low plasma. One of four interferences (dextrose, EDTA, mannitol, or urea) was added
to each tube at one of four concentrations (0, 100, 200, or 300 mg/dL), and mixed by hand. tubes 1
and 14, considered as controls, did not receive any interference (Concentration 0) and were repeated

twice.

Part of the plasma from each tube was transferred to Eppendorf tubes and sent to an accredited

private analysis laboratory (Elmaadani) in Meknes, Morocco. The remaining part was assayed for
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Glycemia, using three different glucometers, belonging to different brands, and different countries,
OnCall (USA), CareSens and GlucoLab (South Korea). A set of four plasma samples was also
analyzed in another accredited private laboratory (Biougnach, Meknes, Morocco) to compare and

verify laboratory results.

All treatments and measurements were performed randomly. The glucometers used in this study
were calibrated by the seller to simulate the common behavior of the patients. data were analyzed,
using R-software (Core Team, 2024), by ANOVA and pairwise T-test. Kruskal-Wallis nonparametric

test was also used when conditions of these procedures were not met.
3. Results and Discussion

Results were not lab dependent (p=0.12). The lab values were then considered good bases of

comparison for our glucometer results.

The two plasmas (High and Low) were significantly different in glycemia. The duration of 24 h
was not sufficient to deplete the blood from glucose. Indeed, The High and the Low controls had a
BG of 99 and 45 mg/dL (figure 1), respectively. The collected blood pool (High) was normal with

respect to glycemia.

240
200

190

Glyenmla (mg/dL)

high low

Figure 1: Mean glycemia of the High (frozen after collection) and the Low (left at room

temperature for 24h) plasmas. Error bars represent the standard error.
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The different interferences, except dextrose, did not affect glycemia (figure 2). This was true for
all the concentrations tested. In fact, concentration and glycemia (measured in the lab) were
correlated (r=0.95, p<0.001) For plasmas containing dextrose; but not correlated (r=0.003, p>0.05)

for plasmas containing one of the other interferences.

e

Glycemia (mg/dL)
P

e

contral Doextrow LDTA Mannltol Umoo

Figure 2: Glycemia of plasmas containing different Interferences. The control plasma does not

contain any Interference. Error bars represent the standard error.

The average BG measured by the three glucometers was significantly higher than that of the lab,
except for CareSens (figure 3). This difference averaged 22% (15.4 for Low blood and 28.6 for High
blood with p<0.05), making the glucometer not reliable for the determination of the exact BG.
However, the results of the glucometers were correlated with those of the Lab (r=0.95, p<0.001).
These glucometers are then precise but not accurate. Since our study used only one glucometer per
brand, we are not allowed to conclude that CareSens is more accurate than the others. The outstanding

result of this glucometer may only be due to good calibration.

Although the difference between glucometer and lab readings was significant, it was not affected

by the interferences. This makes our study results applicable to different blood compositions.
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Figure 3: Glycemia measured by different glucometers or in the lab. Bars lacking a common

letter differ (p<<0.05). Error bars represent the standard error.
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5. Conclusion

The glucometers used in Morocco are precise enough to be used to follow glycemia evolution.
However, they should be better calibrated before sale for a better accuracy that allows the exact blood

glucose determination. EDTA, mannitol, and urea, do not interfere with this determination.
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Abstract: Deep learning has transformed medical image analysis, achieving remarkable precision in tasks like diagnosing
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1. Introduction

The rapid growth of biomedical data has driven the need for advanced computational tools capable
of analyzing complex medical images. Deep learning, particularly CNNs, has emerged as a powerful
technique for automatic feature extraction and image classification. In this work, we assess the
training performance of a CNN architecture applied to medical image classification by analyzing the

loss and accuracy over 20 and 40 epochs.

2. Methodology

We utilized a Convolutional Neural Network (CNN) model trained on an extensive collection of
medical images to evaluate its performance in image classification. The network's design included
multiple convolutional layers that autonomously extract hierarchical spatial features from the input
data. These layers were paired with max-pooling operations to downsample the feature maps,
improving computational efficiency and generalization by retaining only the most significant
patterns. Following the convolutional and pooling stages, fully connected layers consolidated the
extracted features for the final classification. To enhance the model’s ability to capture complex data
relationships, ReLU (Rectified Linear Unit) activation functions were applied after each layer,

introducing non-linearity and enabling the learning of sophisticated patterns.

2.1.DATA SET

The dataset comprised a diverse collection of labeled medical images representing multiple
diagnostic categories, enabling a comprehensive evaluation of the model's segmentation and

classification performance.

22.NETWORK ARCHITECTURE

. Convolutional layers: Extracted hierarchical features from the input images.
. Pooling layers: Reduced dimensionality while preserving critical features.

. Fully connected layers: Mapped features to output classes.

. Activation function: ReLU for non-linearity.

. Loss function: Cross-entropy for binary classification.

. Optimization algorithm: Adam optimizer.
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Table 1: Model Architecture

Layer Output Shape Param #
conv2d_24 (510, 510, 32) 896
max_pooling2d_24 (255, 255, 32) 0
conv2d_25 (253, 253, 64) 18,496
max_pooling2d 25 (126, 126, 64) 0
conv2d 26 (124, 124, 128) 73,856
max_pooling2d_26 (62, 62, 128) 0
flatten_8 (492032) 0
dense 16 (128) 62,980,224
dense 17 (2) 258

3.Training Procedure

The model was trained for 20 and 40 epochs to assess its learning progression at different training

stages. Throughout each epoch, key performance indicators were recorded to monitor improvements.

The loss function, which quantifies the difference between predicted outputs and actual labels, was

tracked to evaluate how effectively errors decreased during training. Concurrently, accuracy

representing the proportion of correctly classified samples was measured at every iteration. By

analysing these metrics, we could determine whether the model successfully converged by

progressively adapting to the training data or exhibited potential overfitting, where performance

plateaued or degraded despite additional training.

4. Results

4.1. LOSS CURVE ANALISIS

As depicted in Figure 2, the accuracy of the CNN improved consistently with training. The model

achieved higher accuracy after 40 epochs, indicating the benefit of extended training.
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5. Discussion

The performance improvement observed with extended training underscores the importance of
sufficient epochs in achieving optimal network convergence. The decrease in loss and the
corresponding increase in accuracy reflect the model’s ability to learn discriminative features from

medical images.

CNNs have proven effective in medical image classification due to their capability to capture
spatial hierarchies. The results of this study align with previous findings in the literature, which

highlight the effectiveness of deep learning models in medical image analysis.

Table 2: Loss and Accuracy for Test ensemble

Epochs Final Training Loss Final Training Accuracy
20 0.35 87%
40 0.21 93%

6. Conclusion

The structured architecture of CNNs, combined with advanced performance enhancement
techniques, has significantly improved their effectiveness in medical anomaly detection. Techniques
like data augmentation, transfer learning, and attention mechanisms have addressed challenges such

as limited data and model generalization.

Future research should explore integrating multimodal data and developing interpretable CNN

architectures to further advance their clinical applications.
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