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Editorial: Precision, Progress, and the Future of Medicine 

Moroccan Journal of Health and Innovation (MJHI) – Volume 1, No 2 

The Moroccan Journal of Health and Innovation (MJHI), a scientific platform that emerged 

from the 3rd International Conference on Biomedical Engineering and Science (ICBES), which 

took place during the 4th Rencontre Biomédicale (RMB) of the Moroccan Biomedical Society 

(SMB) in Marrakech from February 20 to 22, 2025, is pleased to present its second issue of 

Volume 1.  

 

The multidisciplinary convergence of clinical technology evaluation, artificial intelligence, and 

biological innovation fields that are altering the parameters of contemporary healthcare is 

reflected in this issue. The five chosen articles provide an engaging look at Morocco's and other 

countries' ever-changing research environment. 

A very unique work on three-dimensional human hearing modeling using the finite element 

approach opens the issue. The authors replicate the mechanical behavior of the auditory system 

by integrating bone, cartilage, skin, and the tympanic membrane, going beyond traditional 

models. In addition to advancing anatomical teaching, this study establishes the foundation for 

upcoming biomechanical and audiological applications. 

Two papers explore how artificial intelligence is affecting medical imaging, with a focus on 

deep learning's diagnostic potential. A cutting-edge analysis of generative AI methods, 

including diffusion models, GANs, and VAEs, applied to cardiac MRI is the first. This study 

demonstrates how the lack of annotated datasets can be addressed and how improving 

diagnostic precision in cardiology—still the leading cause of death worldwide may be achieved 

through the creation of synthetic data. 

The use of deep learning, particularly convolutional neural networks (CNNs), in the detection 

of brain tumors is reviewed in the second AI-focused contribution. The authors evaluate the 

effectiveness of several CNN models across multiple imaging modalities and datasets by 

conducting a thorough evaluation of studies conducted between 2020 and 2024. Their results 

highlight the advancements as well as the remaining obstacles in the pursuit of accurate, real-

time tumor identification. 



An empirical assessment of CNN's performance in medical picture categorization is included 

in a different publication to supplement this review. The work validates the reliability of CNNs 

as instruments to assist clinical decision-making, particularly in environments with limited 

resources, by assessing the models' accuracy and loss during multiple training epochs. 

The issue concludes with a critical analysis of the accuracy of glucometers that are often used 

in Morocco. The authors compare the readings from these devices to those from a recognized 

laboratory after testing them under various biological interferences. Despite frequently 

overestimating blood glucose levels by 22%, the glucometers maintained a strong correlation 

with laboratory data (r = 0.95), confirming their usefulness for glycemic monitoring—as long 

as calibration standards are strengthened before being distributed. 

When taken as a whole, these contributions show a thriving ecosystem of research where local 

problems lead to internationally applicable answers and where technology advances both 

science and medical care. Inspiring academics, clinicians, and innovators to pursue cooperative, 

significant work in health and biomedical science is our goal with this issue of MJHI.  

 

We would like to thank all of the authors, reviewers, and conference attendees for their hard 

work and priceless input. With every issue of MJHI, which has only just begun, we renew our 

dedication to promoting scientific quality, encouraging innovation, and elevating Moroccan 

research internationally. 

Pr. Dr. Hicham CHATOUI 

Editor-in-Chief & Publication Director 

Moroccan Journal of Health and Innovation (MJHI) 
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Abstract: Brain tumors are a major global health challenge and one of the leading causes of death worldwide. Early 

detection is critical to improving survival. However, obtaining reliable and accurate results remains a significant 

challenge, even when utilizing high-quality brain imaging techniques. Diagnosing a brain tumor is often a lengthy process 

that requires extensive radiological expertise. In this context, using deep learning, particularly convolutional neural 

networks (CNNs), is a promising approach for improving both the accuracy and the efficiency of the diagnosis of brain 

tumors. This review analyses studies published between 2020 and 2024 on deep learning techniques to identify and 

categorize brain tumors. It also highlights the variety of methodologies and algorithms that have been put forth and 

evaluates the diverse applications of deep learning. In addition to publicly available datasets, it examines radiological 

imaging techniques. The aim of this study is to evaluate the effectiveness of different deep learning models in the 

identification and categorization of brain tumors from medical scans. Furthermore, the review highlights notable advances 

in the field and underscores crucial gaps. 

Keywords: medical imaging, brain tumor detection, convolutional neural networks, deep learning. 
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1. Introduction 

Brain tumors are a major global health problem, accounting for more than 300,000 cases each year, 

according to the World Health Organization (WHO). They have increasing incidence rates worldwide 

(Arulmani et al., 2024). This makes early diagnosis a necessity to prevent their prevalence. Machine 

learning and deep learning can help diagnose and prevent brain tumors.  Deep learning algorithms 

are the most preferred due to their high performance. 

Brain tumors can be divided into two main categories (Arulmani et al., 2024): primary tumors, formed 

in the brain, and metastatic tumors, originating in other parts of the body and four times more frequent. 

Primary tumors are either glial or non-glial, benign or malignant. The WHO has classified tumors 

into 4 grades according to their malignancy, growth and histological characteristics. Grade 1 tumors 

are benign, growing slowly and often treatable by surgery. Grade 2 tumors, though benign, may 

involve neighboring tissues and recur at a higher grade. Grade 3 tumors, which are malignant, 

propagate rapidly and require treatments such as chemotherapy. Grade 4 tumors, the most aggressive, 

spread rapidly, recur frequently and require combined therapies. 

Brain tumors can be classified according to how they grade, as follows (Kim and Lee, 2022): 

Craniopharyngiomas, which are benign but difficult to remove because of their proximity to critical 

structures such as the pituitary gland, are a type of low-grade brain tumor (grades I and II). 

Chordomas, rare malignancies, typically affect the axial bones and require targeted radiation therapies 

such as carbon ion or proton therapy. Gangliogliomas and gangliocytomas, often associated with 

seizures, develop in the temporal lobes and are common in young adults. Schwannomas, benign 

tumors of the peripheral nerves, are often treated with surgery or radiation, although vestibular 

schwannomas can cause hearing loss. Pituitary adenomas and pineocytomas, which are usually 

benign, occur in the pituitary gland and pineal gland, respectively, and are generally slow growing 

and treatable. High-grade (grade III and IV) brain tumors include anaplastic astrocytomas, aggressive 

malignancies that require surgery, radiation therapy, and chemotherapy. Anaplastic 

oligodendrogliomas, which originate from myelin-producing cells, also require a multimodal 

approach. Glioblastoma multiforme (GBM), the most malignant and aggressive form, is distinguished 

by abnormal cells, necrotic areas, and new blood vessel formation. There is no standard treatment for 

recurrent cases, but treatment typically includes surgery, radiation and chemotherapy.  

The World Health Organization (WHO) classified malignant brain tumors as destructive and fatal 

neoplasms with high mortality rates that affect all age groups (Xie et al., 2022). According to the 

WHO, 9.6 million people worldwide die from brain tumors each year. Brain tumors are a common 

and serious disease that significantly reduces the life expectancy of people of all genders and all age 
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groups (Buabeng et al., 2024). Early detection and treatment are critical to prevent permanent organ 

damage. 

In the field of medical decision support, artificial intelligence (AI) is increasingly being used for 

disease detection and accurate diagnosis, has made remarkable progress in recent years. Solving real-

world problems in different fields. Deep learning (DL), a branch of AI, is rapidly revolutionizing 

several fields by successfully tackling complex challenges like natural language processing and image 

recognition. Its powerful capabilities have also been applied to medicine, where DL models have 

proven effective in a variety of applications. 

This paper is structured as follows: Section 2 presents an overview of machine learning and deep 

learning techniques used for brain tumor classification and detection. Section 3 discusses different 

imaging modalities, datasets and selection criteria considered in this review. Section 4 provides a 

performance analysis, while Section 5 concludes the study. 

2. Literature review of brain tumor classification models 

A wide range of machine learning and deep learning methods have been developed for brain tumor 

image classification. In (Prabha and Singh, 2024), the authors used the EfficientNet family to 

automatically detect and classify three types of brain tumors using magnetic resonance imaging 

(MRI). Their study demonstrated the effectiveness of these architectures, achieving the following 

accuracy rates 96.07% (EfficientNet-B0), 97.86% (EfficientNet-B1), 98.21% (EfficientNet-B2), 

97.86% (EfficientNet-B3), 98.93% (EfficientNet-B4), 99.64% (EfficientNet-B5), 98.57% 

(EfficientNet-B6) and 99.64% (EfficientNet-B7). 

In (Tiwari et al., 2025), Raj Gaurang Tiwari et al. introduced the Adaptive Neuro-Fuzzy Inference 

System-Fusion-Deep Belief Network (ANFIS-F-DBN) model, which achieved an accuracy of 

90.00%. In [13], the authors propose an automatic brain tumor diagnosis system that uses a 

convolutional neural network (CNN) for both classification and segmentation of glioblastomas. Using 

1,800 images from the BraTS 2017 dataset, their model achieved a maximum accuracy of 99%. 

The study in (Ahmed et al., 2024) introduced a hybrid ViT-GRU model, where the Vision 

Transformer (ViT) extracts essential features and the Gated Recurrent Unit (GRU) identifies 

relationships between them. This approach effectively addresses class imbalance and outperforms 

existing diagnostic methods. The model was trained using multiple optimizers, including SGD, Adam 

and AdamW, and evaluated through rigorous 10-fold cross-validation. In addition, Explainable 

Artificial Intelligence (XAI) techniques - such as Attention Maps, SHAP and LIME - were integrated 

to improve interpretability. On the primary data set, BrTMHD-2023, the model achieved its highest 

accuracies with different optimisers: 81.66% (SGD), 96.56% (Adam) and 98.97% (AdamW). In 
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(Alshuhail et al., 2024), the authors developed a deep learning based model using convolutional 

neural networks (CNNs). The proposed model follows a sequential CNN architecture with multiple 

convolutional, max-pooling and dropout layers followed by dense layers. This model achieved an 

overall test accuracy of 98%, demonstrating a significant improvement in diagnostic accuracy. 

Suganya Athisayamani et al (Alshuhail et al., 2025) used the AlexNet50 deep model for classification 

using a discriminative learning method. Their approach consists of three learning stages: (1) feature 

learning using the entire dataset, (2) training on an extended dataset while freezing certain AlexNet50 

layers, and (3) further training on the extended dataset while leaving the frozen layers unchanged. 

The method was tested on three publicly available MRI classification datasets. Several 

hyperparameter optimisation techniques - including Adam, Stochastic Gradient Descent (SGD), Root 

Mean Square Propagation (RMSprop), Adamax and AdamW - were used to evaluate the learning 

process. The highest classification performance was achieved on the HWBA dataset with an average 

accuracy of 98%. 

In 2024, researchers have proposed a novel MRI-based brain tumor detection method that integrates 

machine learning and deep learning techniques. MRI images were pre-processed using a median filter 

combined with an adaptive contrast enhancement algorithm (ACEA) to improve image quality and 

reduce noise. Segmentation was performed using a fuzzy c-means algorithm. Feature extraction was 

based on the grey level co-occurrence matrix (GLCM), including energy, mean, entropy and contrast. 

Classification was performed using the Ensemble Deep Neural Support Vector Machine (EDN-

SVM), which combines deep neural networks with SVMs. The model achieved 97.93% accuracy in 

distinguishing between normal and abnormal brain tissue in MRI scans (Anantharajan et al., 2024). 

Zelenak and collaborators have introduced the Brain Tumor Recognition using an Equilibrium 

Optimizer with a Deep Learning Approach (BTR-EODLA) technique for MRI image analysis. This 

method is designed for high accuracy brain tumor detection. The BTR-EODLA approach applies 

median filtering (MF) to reduce noise in MRI scans, uses the squeeze-excitation ResNet (SE-

ResNet50) model for feature extraction, and uses the Equilibrium Optimizer (EO) to fine-tune model 

parameters. A Stacked Autoencoder (SAE) is then used for tumor detection. Experimental results 

showed an impressive accuracy of 98.78%, confirming the effectiveness of the proposed technique 

(Zelenak et al., 2013). 

3. Méthodologie 

In this section, we present the criteria taken into account when selecting the papers chosen in the 

present work, as well as different brain tumor detection datasets and medical imaging techniques. 
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3.1. Selection criteria 

The articles selected for this paper were searched using databases known for their coverage of medical 

and deep learning related scientific publications. Specifically, we used PubMed, Google Scholar and 

Scopus, which highlights the most recent and relevant research in medical imaging and artificial 

intelligence. It includes only studies published between 2021 and 2025 that focus on leveraging deep 

learning techniques for brain tumor detection and classification. Inclusion criteria were strictly 

defined and included papers that applied deep learning models to medical images, including MRI and 

PET scans.  

 

3.2. Medical imaging techniques and datasets 

3.2.1. Medical imaging techniques 

A number of conventional methods have been used in the past for brain tumor imaging (Zelenak et 

al., 2013), these include non-invasive and invasive imaging modalities such as x-rays, ultrasound, 

computed tomography (CT) and magnetic resonance imaging (MRI). While X-rays played a pivotal 

role in their early use, their low sensitivity led to the subsequent emergence of more advanced 

techniques, such as CT and MRI. Ultrasound continues to find application in real-time intraoperative 

monitoring, but its use has been largely supplanted by MRI-based neuronavigation. The use of CT is 

effective in the detection of bone abnormalities and provides rapid imaging; furthermore, advanced 

techniques such as CT angiography and perfusion imaging are now well established. MRI is 

considered the gold standard in brain imaging; its unparalleled tissue contrast and detailed imaging 

make it ideal for tumor assessment. However, it should be noted that CT is more widespread and 

affordable than MRI. 

3.2.2. Datasets 

Researchers have used several MRI datasets for brain tumor classification. These include the Brain 

Tumor Dataset (from Figshare or collected by the authors), the BRATS Dataset (especially 

BRATS2015), and datasets available on Kaggle. These databases typically include classes such as 

meningioma, glioma, pituitary, or tumor/non-tumor. MRI scans are often pre-processed (e.g. resized, 

normalized, noise suppressed) before analysis. Researchers can collect data directly or get it from 

public databases (like Figshare) and use it to classify images into categories of binary (tumor/non-

tumor) or multi-class (specific tumor types). Table 1 summarizes the dataset types used in the studies 

included in this review. 
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Table 1. datasets used in brain tumor classification. 

Dataset Source Classes 

Brain Tumor Dataset 
Figshare, Collected 

by authors 

Meningioma, Glioma, Pituitary, Tumor / Non-Tumor 

BRATS Dataset BRATS2015 

High Grade Glioma, 

Low Grade Glioma 

Figshare Dataset Figshare Meningioma, Glioma, Pituitary, Tumor / Non-Tumor 

Kaggle Dataset Kaggle Cancerous, non-cancerous 

MRI Images 

Collected 
By authors 

Glioma, Meningioma, Pituitary, Tumor / Non-Tumor 

Brain MRI Images Various sources Tumor / non-tumor 

4. Performance analysis 

Several methods stand out for their high accuracy, among the most effective approaches for brain tumor 

classification. The EfficientNet family (Prabha and Singh, 2024), using the EfficientNet-B5 and B7 

architectures, reached a maximum accuracy of 99.64%, demonstrating the effectiveness of these models in 

MRI image analysis. The hybrid ViT-GRU model (Ahmed et al., 2024) achieved outstanding results, reaching 

an accuracy of 98.97% through the integration of explicable AI techniques and hyper-parameter optimization. 

Using classical architectures, AlexNet50 (Alshuhail et al., 2025) and a sequential CNN model (Alshuhail et 

al., 2024) both achieved 98.00% accuracy. Another promising method, the BTR-EODLA model (Zelenak et 

al., 2013), achieved an impressive 98.78% by combining preprocessing, features extraction and parameter 

optimization. 

Table 2. Performance comparison of the reviewed models (Annex). 

                                           

Reference Number Method Accuracy (%) 

(Prabha and Singh, 2024) EfficientNet-B5/B7 99.64 

(Ahmed et al., 2024) Hybrid ViT-GRU 98.97 

(Alshuhail et al., 2024) Sequential CNN 98.00 

(Alshuhail et al., 2025) AlexNet50 98.00 

(Zelenak et al., 2013) BTR-EODLA 98.78 
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5. Conclusion 

A brain tumor is an irregular growth of brain tissue that interferes with the normal functioning of the brain. 

The primary objective of medical imaging is to develop algorithms capable of extracting accurate and relevant 

information while minimizing errors. The classification of brain tumors using MRI data is generally divided 

into four main steps: pre-processing, image segmentation, feature extraction, and tumor classification. 

However, achieving a fully autonomous system for clinical applications remains challenging due to the 

variable appearance, irregular size, shape and nature of tumors. This study aims to provide an overview of 

recent developments in brain tumor research, highlighting imaging techniques, summarising the WHO tumor 

classification standards and examining the deep learning algorithms applied to brain tumor classification. 

Compared to region growing methods and traditional machine learning approaches, deep learning techniques 

offer notable advantages in automated detection and classification of brain tumors, mainly due to their 

powerful feature learning capabilities. Although the contribution of DL techniques has been significant, the 

need for a general technique is still an issue. 
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Abstract: The integration of artificial intelligence (AI) has led to notable advancements in medical imaging. However, 

this progress is limited by the lack of expert-annotated data, particularly for rare pathologies, which hampers scientific 

research and the training of machine learning models. Generative artificial intelligence meets this need by synthesizing 

realistic images that correspond to ground-truth data, thereby increasing the data available for training and evaluating 

Algorithms. In this review, we focus on the cardiac domain, and more specifically on magnetic resonance imaging (MRI), 

which is an important tool in the diagnosis of cardiac pathologies (the world’s leading cause of death). We examine 

various generative AI methodologies, such as generative adversarial networks (GANs), variational autoencoders (VAEs), 

and diffusion models, applied to cardiac MRI data. Furthermore, we discuss the implications of these techniques in 

generating synthetic datasets, augmenting rare pathological cases, and improving segmentation accuracy and diagnostic 

outcomes. Finally, we highlight the challenges, limitations, and future directions of integrating generative AI into cardiac 

MRI workflows, aiming to guide further research and clinical translation. 
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1. Introduction    

Cardiac magnetic resonance imaging is an important modality in the diagnosis, intervention and 

management of cardiovascular diseases which is one of the most common causes of death in the world 

according to the world health organization (Jafari et al., 2023) . By providing high-resolution images 

of the heart, accurate identification of anatomy, functions and tissues characterization, it can identify 

cardiac pathologies such as myocardial infarction, ischemic heart disease, cardiomyopathy, and 

congenital heart defects. The application of cardiac MRI is based on the segmentation of heart 

structures and regions of interest for analysis. However, manual segmentation is time-consuming and 

labor-intensive, making it susceptible to inter-observer variability. This highlights the strong need for 

automated segmentation methods (Kanakatte et al., 2022). 

The integration of artificial intelligence (AI) into the automation of cardiac segmentation has 

experienced significant advancements in recent years. In particular, the adoption of deep learning 

techniques such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs), 

has revolutionized the field by achieving exceptional accuracy and efficiency. These methods 

excelled over traditional algorithms in effectively delineating complex anatomical structures and 

variations in cardiac magnetic resonance imaging (MRI) data (Taraboulsi et al., 2023). Nevertheless, 

these models face significant challenges mainly in terms of relying on a database with expert-

annotation. Considering these limitations, generative artificial intelligence can meet the need by 

generating realistic synthetic data, thus increasing the diversity and quantity of available databases, 

while preserving pathology-related characteristics. By leveraging techniques such as (GANs), 

(VAEs), and diffusion models, generative AI can synthesize realistic cardiac MRI images with 

corresponding ground-truth annotations. These synthetic datasets have the potential to augment 

existing ones and enhance the training of segmentation algorithms. and improving diagnostic 

accuracy by enabling more robust and diverse model development (Al Khalil et al., 2023). 

In this review, we aim to provide a comprehensive analysis of the role of generative AI in cardiac 

MRI segmentation. We begin by outlining the different techniques of generative AI followed by an 

exploration of state-of-the-art databases devoted to cardiac MRI semantic segmentation. Next, we 

discuss the existing works in the literature and their contributions to synthetic data. Finally, we 

examine the challenges and limitations of these approaches and propose future directions to guide the 

integration of generative AI into cardiac MRI workflows. 
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2. BACKGROUND 

Generative AI is an Artificial intelligence field that can generate realistic images, text and sounds 

by using deep learning algorithms that are trained on large amounts of data. Generative AI has seen 

tremendous growth in recent years and has been applied to a wide range of practical and creative 

fields, from art and entertainment to healthcare and engineering. We briefly introduce the different 

generative AI paradigms in the following. 

• Generative Adversarial Networks: 

Presented by Goodfellow et al. in 2014 (Goodfellow et al., 2014) ,are a novel class of deep learning 

techniques (a type of artificial intelligence algorithm). GANs consist of two models: a discriminator 

D, which is tasked with distinguishing between real and fake images, and a generator G, which learns 

to create realistic data through training. One type of GANs that is widely used in medical imaging is 

Pix2Pix GAN that is designed for image-to-image translation tasks. Pixel-to-pixel, indicating that the 

model operates on a pixel-level mapping between input and output images. The goal is to learn a 

mapping between an input and a corresponding output image. Pix2pix uses a conditional GAN 

architecture, where both discriminator and generator are conditioned on the input image.  This 

adversarial training process allows the model to learn to generate high-quality image transformations 

(Isola et al., 2024). 

• Diffusion models:  

Diffusion model is a class of deep learning models used for generating high-quality images from 

text descriptions. The name comes from the idea of "diffusion" as a process of gradually transforming 

noise into a desired output, and "stable" reflects the model's ability to produce consistent high-quality 

results(Rombach et al., 2022). Thanks to this iterative denoising process, Stable Diffusion models 

reach higher quality than GANs. However, their application in medical imaging remains limited due 

to the scarcity of training data with text annotations and their high computational complexity.   

• VAE:  

Is a deep learning model designed to generate data similar to the ground truth by leveraging the 

principles of autoencoders. It consists of three main components: an encoder, a decoder, and a loss 

function. The goal of VAE is to learn both an encoder and a decoder that map data x to and from a 

continuous latent space z. The encoder receives an input image and reduces it to a more compact 

vector in latent space, capturing the essential features of the data. The decoder then processes this 
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compressed vector to reconstruct it, transforming it back into a format that facilitates prediction of 

the output image. This process ensures that the data produced is very similar to the original data, 

while preserving the diversity of the results (Kusner et al., 2025), (Kingma and Welling, 2013). 

3. DATASET 

Annotated datasets play a crucial role in the training and evaluation of GAI models. In the context 

of CMRI datasets, it enables models to learn complex patterns and generate realistic, high-quality 

results. This section (Table 1) presents some of the most popular datasets available from CMRI. 

Table 1 : Summary of available datasets of CMRI for semantic segmentation (Annex). 

Reference Dataset Number of cases Citations Years 

(Bernard et al., 2018) ACDC 100 train 

50 test 

1848 2018 

(Campello et al., 2021) M&Ms 175 train 

136 test 

 2020 

(Perry et al., 2009) SCD 45 Cine 445 2009 

(Kadish et al., 2009) LVSC 100 train 100 test 134 2011 

(Petitjean et al., 2015) RVSC 16 train 

32 test 

264 2015 

(Andreopoulos et al., 2007) York 

University 

33 Cine 393 2008 

4. APPLICATIONS OF GENERATIVE AI IN CARDIAC MR IMAGING 

The state of the art in GAI applications for cardiac MR imaging can be classified into two main 

approaches: studies that focus exclusively on synthetic scan generation without pixel-wise semantic 

labels, and those that integrate image generation with segmentation. The following items briefly 

present the papers corresponding to each of these two approaches, highlighting the main 

contributions. 

• Unlabeled MRI Scan generation 

(Yoon et al., 2023): The Sequence-Aware Diffusion Model (SADM) was introduced for the 

generation of longitudinal medical images, such as cardiac and brain MRIs. This model learns to 

generate medical images from image sequences, considering their temporal order. In this way, it can 

synthesize the last image of a cardiac cycle from the first image of that cycle. The model was 
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evaluated on public cardiac MRI data, using the ACDC database.  

 (Kim and Ye, 2022): This study proposed a model for generating 4D cardiac cycle images, 

enabling the visualization of continuous anatomical changes. This model is particularly suited for 

generating 4D images of the cardiac cycle, allowing for continuous and progressive visualization of 

anatomical deformations throughout the cardiac cycle. This model relies on a structure similar to 3D 

UNet, with skip connections to preserve essential spatial information. This architecture helps generate 

high-quality volumetric images. It includes a Deformation Module based on VoxelMorph-1that 

generates deformation fields in 3D images. This module enables smooth deformation between the 

different phases of the cardiac cycle. Scan to scan without segmentation. 

         (Campello et al., 2022): This study presented a Conditional GAN (cGAN) for synthesizing heart 

scans of different ages using only cross-sectional data. The used cGAN architecture is based on a U-

Net architecture with residual blocks and attention mechanisms. The model is conditioned by age and 

body mass index (BMI) to adjust images according to these covariates. A Wasserstein-GAN 

algorithm with gradient penalty (WGAN-GP) is used to stabilize training. 

• Labled 

(Ossenberg-Engels and Grau, 2020) : The authors proposed a Conditional Generative Adversarial 

Network to predict cardiac deformation between end-diastolic (ED) and end-systolic (ES) frames. 

Using the UK Biobank dataset, their model learned a deterministic mapping between ED and ES 

short-axis frames, enabling the modeling of cardiac sequences and the functional behavior of the 

heart. This learning helped to increase the data by transforming the scans from each phase to the other 

one respecting their corresponding semantic labels.  

(Al Khalil et al., 2022): This framework, trained on the M&Ms dataset, focuses on right ventricle 

segmentation and integrates three key components: Detection of the region of interest (ROI) by 

cropping the image to center the heart within the field of view (FOV), image synthesis through the 

application of a mask-conditional GAN that learns the mapping from segmentation labels to 

corresponding realistic images. The application of random elastic deformation, morphological 

dilation, and erosion to the labels to generate anatomical variations of the heart, including 

pathological cases. Finally, a modified U-Net network was proposed to enhance cardiac segmentation 

through the integration of both real and synthetic images.  
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(Al Khalil et al., 2023): The authors proposed a conditional synthesis approach using GANs to 

generate realistic cardiac MRI images in the short-axis view. This study is based on three main steps: 

image synthesis, a conditional synthesis approach based on GANs is used to generate realistic cardiac 

MRI images in short-axis view. The quality of these images is enhanced using labels of different 

tissues surrounding the heart, generated by a multi-tissue segmentation network trained on simulated 

XCAT-based images. This strategy helped the GAN to generate coherent MRI scans of the heart and 

its surroundings. The next steps of their framework consist of region of interest (ROI) detection and 

heart chamber segmentation using the generated images to train a convolutional neural network 

(CNN), based on a U-Net architecture, for heart chamber segmentation (right ventricle, left ventricle 

and myocardium). 

(Diller et al., 2020): This study utilized cardiac MRIs from patients with Tetralogy of Fallot to 

develop and compare segmentation models. Progressive GANs (PG- GANs) are trained, on the 

collected data sourced from 14 German centers, to generate synthetic MRI frames. The synthetized 

frames were manually segmented to create training data for a U-Net based segmentation model. To 

evaluate the quality of synthetic data a random selection of 200 PG-GAN-generated images and 200 

original MRI images was submitted to human investigators who had to identify the PG-GAN-

generated image which reflected their realism.  

(Amirrajab et al., 2022): This study introduced a two-module framework for generating high-

fidelity cardiac MR images. The first module utilizes a U-Net model for multi-tissue segmentation of 

cardiac MR images. The output of this module is a segmentation mask that labels various tissues, 

including the myocardium (MYO), right ventricle (RV), and left ventricle (LV). These segmentation 

masks serve as input labels for generating new images using a cGAN trained on M&Ms dataset, 

which produces realistic cardiac MR images based on the anatomical structures encoded in the 

segmentation masks. The simulated anatomies of virtual subjects are derived from the 4D XCAT 

phantoms, and the images are simulated through a physics-based simulation tool that implements the 

Bloch equations for cine studies.  

(Kim and Ye, 2022): DiffuseMorph is an unsupervised model for deformable image registration 

using diffusion models. Image registration aims to align multiple images taken from different angles 

or at different time points by deforming them to match a reference image or atlas.  DiffuseMorph 

achieves deformable image registration in an unsupervised manner by utilizing a diffusion model. 

The training is based on ACDC benchmarks. These data were resampled, normalized, and cropped to 

fit the model.  
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(Amirrajab et al., 2020): This study proposed a method with two different configurations one 

using only the ground truth annotations available for the heart and another increasing the number of 

labels into 8 classes encompassing the organs surrounding the heart when training the XCAT-GAN 

model. Their pipeline is composed of three cascaded models: (1) a modified version of UNet that 

predicts multi-tissue segmentation maps from real images, used only in 8-class image synthesis. (2) 

a conditional GAN architecture trained on pairs of real images and label maps (4 or 8 classes) to 

generate synthetic images based on XCAT labels. (3) an adapted version of U-Net in 2D, used to 

evaluate new synthetic images and their corresponding labels in various experimental scenarios 

including only valid ones in the augmented training dataset. 

(Abbasi-Sureshjani et al., 2020): The authors proposed a GAN-based approach for synthesizing 

4D (3D+t) cardiac MR images, using the 4D XCAT model as ground truth. To preserve the spatial 

and semantic information of the reference anatomy, they used the SPADE (Semantic Image Synthesis 

with Spatially Adaptive Normalization) model originally proposed for semantic controlled 

generation. For training, they used images from the ACDC database with their corresponding 

segmentation masks. During inference, they replace the segmentation masks with voxelated 4D labels 

from the XCAT to generate new 4D MRI images.  

(Lustermans et al., 2022): This work aimed to improve cardiac MRI scan segmentation with late 

contrast (LGE), particularly in contexts with limited data sets. The first approach involves dividing 

the segmentation task into simpler sub-problems, and the second relies on the use of synthetic data to 

increase the amount of data available. A cascade pipeline method has been proposed, comprising 

three deep-based blocks. The first identifies the left ventricle, the second delineates the left ventricular 

myocardium, and the third segments the regions of myocardial infarction. The segmentation-

conditioned synthetic data generator (using a GAN) was used to augment the training data. The study 

also showed that augmentation by synthetic data improves scar segmentation, particularly in 

challenging datasets with noise and artifacts.  

(Skandarani et al., 2020): This paper proposed a model to produce highly realistic MRI images 

(100k) with pixel-accurate ground truth for cardiac segmentation in cine-MR combining Variational 

Autoencoder (VAE) with SPADE-GAN. VAE network is trained to learn the latent representations 

of cardiac shapes, enabling the model to capture the variations in heart shapes across individuals. On 

the other hand, SPADE-GAN generates realistic MR images based on an anatomical map input. The 

GAN learns to generate images whose cardiac structures align with the shapes generated by the VAE.  

Figure 1 illustrates a mapping of the reviewed literature works based on their ability to generate 
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labelled scans and also depending on the required inputs (Scan, Scan+Label, Label). 

 

Taxonomy of existing works in cardiac MRI segmentation. 

5. OPENING 

Generative AI has enabled significant advances in the improvement of medical image databases, 

particularly for rare or difficult-to-annotate cases, such as cardiac MRI. However, beyond the 

generation of realistic and diverse images to train segmentation models, many other applications are 

possible in this field, notably decision-making through image classification, as well as temporal image 

synthesis to study the evolution of cardiac pathologies over time, an important area in the monitoring 

of patients with chronic cardiovascular diseases.  

6. Conclusion:  

The integration of generative AI into cardiac imaging, particularly for MRI segmentation, represents 

an essential lever for cardiovascular management. Techniques such as GANs, VAEs and diffusion 

models have demonstrated their potential to generate realistic images and increase the diversity of 

training data, while improving the accuracy of segmentation models. However, several challenges 

remain, particularly regarding the quality of the images generated, their generalizability to varied 

clinical populations and the need for high-quality annotated data. As technology continues to advance, 

these models could not only enrich available databases but also improve diagnostic and clinical 

outcomes. The future of GAI in cardiac MRI lies in better clinical integration, with particular attention 
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to model validation and adaptation to specific patient needs.  
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Abstract: The three-dimensional modeling of the human ear has emerged as a relevant alternative to experiments 

conducted on cadavers, owing to its accessibility while providing comparable benefits for students (Jenks et al., 2021). 

Two primary methods for generating 3D computer models of the human ear are documented in the literature: the µCT 

imaging method and the finite element method, which is based on a numerical approach. 

The µCT (Micro-computed tomography) imaging approach involves performing high-resolution scans at a microscopic 

scale of the human ear using X-rays, with the aim of reconstructing it in two or three dimensions. In contrast, the finite 

element method employs documented dimensions and geometric shapes from existing literature to model the human ear 

using work plans.  

The present study will concentrate on the finite element method. It is imperative to acknowledge that most of the three-

dimensional models of the human ear cited in the extant literature do not account for bony and cartilaginous structures 

(Gan et al., 2004), (Zhang and Gan, 2013), (Liu et al., 2022).   

This research aims to develop a comprehensive three-dimensional model of the human external ear, which includes the 

auditory canal, skin, bone, cartilage, and tympanic membrane. This model is intended to facilitate an examination of how 

bone and cartilage influence the displacement of the umbo. In this constructed model, both the ossicular chain and cochlea 

were substituted with a mechanical impedance represented by a mass-spring-damper system.  

The findings from this study suggest that both bone and cartilage contribute to the displacement of the umbo within a 

frequency range of 2500 to 6300 Hz. 

 

Keywords: Three-dimensional modeling, Finite Element Methods, human ear, displacement of the umbo. 

  

 

Received: April 08, 2025 

Revised: May 21, 2025 

Accepted: June 06, 2025 

Published: July 25, 2025 

 

Citation: Senhaji A. Interoperability of Health Systems: Challenges and Perspectives for Improving Care. Moroccan Journal of Health 

and Innovation (MJHI) 2025, Vol 1, No 2. https://mjhi-smb.com 

 

Copyright: © 2025 by the authors.  

mailto:penpenkomguelucrece@gmail.com


Version March 24, 2025 submitted to Moroccan Journal of Health and Innovation (MJHI) 2 of 6 
 

 

Version July 25, 2025 submitted to MJHI                                                                                           https://mjhi-smb.com 

 

1. Introduction  

The human ear serves as the organ responsible for auditory perception. Its primary function 

encompasses the amplification, transmission, and conversion of acoustic waves from the environment 

into electrical impulses that are subsequently interpreted by the brain through the auditory nerve. The 

structure of the ear can be categorized into three distinct sections: the outer ear, which includes the 

pinna and external auditory canal; the middle ear, consisting of the tympanic membrane and ossicular 

chain (comprising malleus, incus, and stapes); and the inner ear, which incorporates both the vestibular 

system and cochlea. 

In the literature, two principal approaches are described for three-dimensional geometric modeling 

of the human ear: one based on imaging scans and another grounded in finite element methods.  

The imaging scan approach entails capturing high-resolution scans of the human ear at a microscopic 

scale using X-rays to reconstruct its geometric shape in two or three dimensions. Conversely, the finite 

element method relies on solving differential equations and utilizes documented dimensions and 

geometric descriptions of the human ear found in literature to model its geometric form.  

Regardless of the modeling approach employed, the three-dimensional (3D) modeling of the human 

ear has emerged as a significant alternative to experiments conducted on cadavers, owing to its 

accessibility while providing comparable benefits for students. In addition to its educational 

contributions, 3D modeling of the human ear facilitates various studies regarding the functioning of 

the auditory system, as well as examining the impact of auditory prosthetics on this system.  

In the present study, we will concentrate on employing the finite element method for modeling 

purposes. Existing literature reveals that the majority of three-dimensional models of the human ear 

created using this methodology do not incorporate bony and cartilaginous tissues (Gan et al., 2004), 

(Zhang and Gan, 2013), (Liu et al., 2022).  

2. Finite element model 

Our approach to creating the 3D human ear model involved the following. The auditory canal was 

modeled using cross-sections with variable diameters and orientations (Figure 1.a). By applying the 

loft operation to all the cross-sections defining the auditory canal, a 3D geometry of an "S" shaped 

canal was generated (Figure 1.b). Both parts of the tympanic membrane were modeled. Its geometry 

is conical (Daphalapurkar et al., 2009), with a surface area of 123.5 mm², a uniform thickness of 0.1 

mm, a height of 1.7 mm (Lee et al., 2006), (Wever and Lawrence, 1954) (Figure 2.a), and it forms an 
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inclination angle of 50 degrees with the auditory canal (Stinson and Lawton, 1989) (Figure 2.b). The 

skin was modeled with a decreasing thickness ranging from 1 mm to 0.8 mm at the cartilaginous part 

and from 0.8 mm to 0.5 mm at the bony part (Ballachanda, 2013), (Perry and Shelley, 1955), 

(Brummund et al., 2014) (Figure 3.a). The cartilage was modeled over a length of 15 mm from the 

entrance of the canal, exhibiting a decreasing thickness from 13.6 mm to 8 mm relative to the auditory 

canal (Figure 3.b). The bone was modeled over the other half of the auditory canal, showing a varying 

thickness from 6.9 mm to 8.8 mm relative to the auditory canal (Figure 3.c). 

 

 

 

 

Figure 1. Geometric model and dimensions of the auditory canal. 

 

 

 

 

Figure 2.  Geometric model and dimensionsof the eardrum. 
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Figure 3. Geometric model and dimensions of (a) the skin, (b) cartilage and (c) bone. 

 

 

 

Figure 4. 3D model of the human ear. 

3. Boundary conditions 

For this study, the auditory canal was defined as a fluid domain filled with air. The skin, bone, cartilage, 

and tympanic membrane were delineated as solid domains.  

To restrict any movement in space, the tympanic ring, the circumferential boundaries of the skin, bone, and 

cartilage were fixed using a fixed constraint displacement (ux=uy=uz=0).  

The loading of the ear components located directly after the tympanic membrane (the malleus, incus, stapes 

and cochlea) has been replaced by an equivalent mechanical impedance represented by a mass-spring-damper 

system. For this mechanical impedance, the value of the spring constant ‘K’ and the friction coefficient ‘d’ 

used are respectively 120 N/m and 0.2 N·s/m. 

A plane wave of 0.2 Pa corresponding to 80 dB was applied at the entrance of the auditory canal. The 

interfaces between the solid domains and the auditory canal were expressed through acoustic-structural 

(a) (b) (c) 
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coupling.  

Material properties 

The materials’ properties have been taken from the literature and are presented in Table 1.  

Table 1: Material properties of the proposed model  

  Young's 

modulus (MPa) 

Density 

(kg/m3) 
Poisson's ratio Loss factor 

Bone 

 

Value 11316 1714 0.3 0.01 

Reference (Shaw and 

Stinson, 1981) 

(Shaw and 

Stinson, 1981) 

(Delille et al., 

2007) 

n/a 

Cartilage 

 

Value 7.2 1080 0.26 0.05 

Reference (Peterson and  

Dechow, 2003) 

(Grellmann et 

al., 2006) 

(Peterson and  

Dechow, 2003) 

n/a 

Skin 

 

Value 0.5 1100 0.4 0.1 

Reference (Cox and 

Peacock, 1979) 

(Sarvazyan et 

al., 1995) 

n/a n/a 

Tympanic 

membrane 

 

Value 33.3 1200 0.3 – 

Reference (Cameron, 1991) (Cameron, 1991) n/a – 

The auditory canal is defined as an air-filled domain with a density of ρair = 1.20 kg/m³ and a 

speed of sound of cair = 343.2 m/s. 

4. Results and interpretations 

In this section, we will examine the impact of bone and cartilage on the displacement of the umbo.  

Here, we examine two configurations. The first is that of a 3D model of the human ear, as described 

in section 2. For reference, this foundational model comprises the auditory canal, cartilage, skin, bone, 

and tympanic membrane. To investigate the influence of bone and cartilage on umbo displacement 

within the proposed model, we removed the skin, bone, and cartilage from the proposed model. 

Subsequently, we substituted the skin with a physiological impedance. 
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Figure 5. Umbo displacement at 80 dB SPL. 

This figure presents the comparative results of the displacement of the umbo induced by an 

acoustic pressure of 80 dB at the entrance of the ear canal. In this figure, we have the results of the 

3D model of the human ear developed with or without bony and cartilaginous tissues, and the results 

of Koike et al. (Koike et al., 2002). 

First, we have a comparison between the results of the 3D model of the human ear developed when 

the cartilaginous and bony tissues are taken into account or not. The comparison of these two results 

highlights the effect of bone and cartilage on the displacement of the umbo. Indeed, we find that bony 

and cartilaginous tissues have a frequency range of interest between 2500 and 6300 Hz. 

Secondly, we have a comparison between the results of our model and those of Koike et al. (Koike 

et al., 2002). This comparative study allows us first to validate the modeling approach, the geometric 

dimensions, and the parameters used. Then, we observe that the results of the model taking into 

account the bone and cartilage present a nearly similar trend to those of Koike et al. (Koike et al., 

2002). Although we have a shift in the peak of the maximum displacement of the umbo. Indeed, 

Koike et al. obtained the maximum displacement around 1250 Hz, but with the 3D model of the 

human ear with the bone and cartilage, the peak of the maximum displacement is observed around 

2500 Hz. One of the reasons that could explain this shift might be the fact that Koike et al. (Koike et 
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al., 2002) modeled the ossicular chain, the ligaments, and tendons of the middle ear and replaced the 

cochlea with a mechanical impedance, whereas in our model, the ossicular chain and the cochlea were 

represented by the impedance of a mass-spring-damper system. 

5. Conclusion 

This study aimed to develop a 3D human ear model to investigate how bony and cartilaginous 

tissues influence umbo displacement. The model includes the auditory canal, bone, skin, cartilage, 

and tympanic membrane (pars tensa and pars flaccida). The middle ear’s influence was accounted 

for by replacing the ossicular chain and cochlea with an equivalent mass-spring-damper impedance. 

Our findings indicate that bone and cartilage influence the response between 2500 and 6300 Hz. 

A comparison with Koike et al. (Koike et al., 2002) revealed discrepancies at various frequencies, 

which we attribute to differences in modeling methodology. Specifically, our model simplifies the 

ossicular chain and cochlea into a mass-spring-damper impedance, whereas Koike et al. explicitly 

modeled the ossicular chain, tendons, and ligaments while representing the cochlea with an 

impedance. To enhance our model, future work will incorporate detailed modeling of the ossicular 

chain, ligaments, tendons, and cochlea 
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Abstract: This study aims to evaluate the reliability of the glucometers that are commonly used in Morocco, and to assess 

the effect, on glycemia determination, of blood content of different substances reflecting various health and nutritional 

conditions. One of four interferences (dextrose, EDTA, mannitol, or urea) was added, at one of four concentrations (0, 

100, 200, or 300 mg/dL) to human blood containing one of two levels of glucose. Blood glucose (BG) was assayed in an 

accredited private analysis laboratory and by glucometers, belonging to three brands. The different interferences, except 

dextrose, did not affect BG. BG values of the glucometers were 22% higher than those of the lab (p<0.05), but highly 

correlated with them (r=0.95, p<0.001). The glucometers used in Morocco are precise enough to be used to follow 

glycemia evolution. However, they should be better calibrated before sale for a better accuracy that allows the exact BG 

determination. 

Keywords: Glucometer, Diabetes, Accuracy, Precision, Self-Monitoring of blood glucose (SMBG), glycemia, 

interference. 
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1. Introduction  

 Diabetes is a common chronic disease, causing different complications (Heald et al., 2020). The 

world prevalence of diabetes reached 9% (463 million adults) in 2019, due to a decreasing mortality 

among diabetics, because of the improved medical care, and to increasing risk factors (Chan et al., 

2020; Magliano et al., 2019).  

The approach of “Self-Monitoring of Blood Glucose” (SMBG) has been suggested by researchers 

for burden reducing and cost-effectiveness improving (Kalatehjary et al., 2008; Lagarde et al., 2006). 

SMBG is a process of Blood Glucose (BG) checking by the patients themselves, thereby increasing 

their self-confidence (Bergenstal et al., 2005; Czupryniak et al., 2014). SMBG is commonly applied 

three times a day (American Diabetes Association, 2016). The awareness of diabetic patients about 

the advantages of SMBG has risen, so its utilization has rapidly increased in recent years (Gomes et 

al., 2010). However, the precision and accuracy of SMBG devices are doubtful (Freckmann et al., 

2010), making it risky to rely on for a clinical decision (Van den Berghe et al., 2001). 

This study aims to evaluate the precision and accuracy of the glucometers that are commonly used 

in Morocco (OnCall Extra, CareSens, and GlucoLab brands), and to assess the effect, on BG 

determination, of blood content of different substances (dextrose, EDTA, mannitol, and urea) 

reflecting various health and nutritional conditions. 

2. Material and methods 

Approximately 200 mL of blood was collected, from 10 volunteers, in heparin tubes. Half of this 

amount was centrifuged and frozen (this was the "High" blood). The other half ("Low" blood) was 

left for 24 hours at room temperature (to allow glycolysis) and then centrifuged and frozen. The two 

plasma pools were defrosted just before use. The volume of each pool was about 45 mL.  

Plasma was distributed over test tubes. The first series of tubes, numbered 1 to 13, contained a 

constant volume (2.5 mL) of High plasma. The second series (14 to 26) contained the same volume 

(2.5 mL) of Low plasma. One of four interferences (dextrose, EDTA, mannitol, or urea) was added 

to each tube at one of four concentrations (0, 100, 200, or 300 mg/dL), and mixed by hand. tubes 1 

and 14, considered as controls, did not receive any interference (Concentration 0) and were repeated 

twice.  

Part of the plasma from each tube was transferred to Eppendorf tubes and sent to an accredited 

private analysis laboratory (Elmaadani) in Meknes, Morocco. The remaining part was assayed for 
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Glycemia, using three different glucometers, belonging to different brands, and different countries, 

OnCall (USA), CareSens and GlucoLab (South Korea). A set of four plasma samples was also 

analyzed in another accredited private laboratory (Biougnach, Meknes, Morocco) to compare and 

verify laboratory results. 

All treatments and measurements were performed randomly. The glucometers used in this study 

were calibrated by the seller to simulate the common behavior of the patients. data were analyzed, 

using R-software (Core Team, 2024), by ANOVA and pairwise T-test. Kruskal-Wallis nonparametric 

test was also used when conditions of these procedures were not met. 

3. Results and Discussion 

Results were not lab dependent (p=0.12). The lab values were then considered good bases of 

comparison for our glucometer results.  

The two plasmas (High and Low) were significantly different in glycemia. The duration of 24 h 

was not sufficient to deplete the blood from glucose. Indeed, The High and the Low controls had a 

BG of 99 and 45 mg/dL (figure 1), respectively. The collected blood pool (High) was normal with 

respect to glycemia.  

 

Figure 1: Mean glycemia of the High (frozen after collection) and the Low (left at room 

temperature for 24h) plasmas. Error bars represent the standard error. 
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The different interferences, except dextrose, did not affect glycemia (figure 2). This was true for 

all the concentrations tested. In fact, concentration and glycemia (measured in the lab) were 

correlated (r=0.95, p<0.001) For plasmas containing dextrose; but not correlated (r=0.003, p>0.05) 

for plasmas containing one of the other interferences.  

 

Figure 2: Glycemia of plasmas containing different Interferences. The control plasma does not 

contain any Interference. Error bars represent the standard error. 

 

The average BG measured by the three glucometers was significantly higher than that of the lab, 

except for CareSens (figure 3). This difference averaged 22% (15.4 for Low blood and 28.6 for High 

blood with p<0.05), making the glucometer not reliable for the determination of the exact BG. 

However, the results of the glucometers were correlated with those of the Lab (r=0.95, p<0.001). 

These glucometers are then precise but not accurate. Since our study used only one glucometer per 

brand, we are not allowed to conclude that CareSens is more accurate than the others. The outstanding 

result of this glucometer may only be due to good calibration.  

Although the difference between glucometer and lab readings was significant, it was not affected 

by the interferences. This makes our study results applicable to different blood compositions.  
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Figure 3: Glycemia measured by different glucometers or in the lab. Bars lacking a common 

letter differ (p<0.05). Error bars represent the standard error. 
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5. Conclusion 

The glucometers used in Morocco are precise enough to be used to follow glycemia evolution. 

However, they should be better calibrated before sale for a better accuracy that allows the exact blood 

glucose determination. EDTA, mannitol, and urea, do not interfere with this determination. 
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Abstract: Deep learning has transformed medical image analysis, achieving remarkable precision in tasks like diagnosing 

diseases and segmenting images. In this research, we assess how well Convolutional Neural Networks (CNNs) perform 

in classifying medical images. The models were trained across several epochs, and their effectiveness was evaluated using 

accuracy and loss metrics. Our findings underscore the reliability and effectiveness of CNNs, showcasing their promise 

for use in clinical decision-making tools. 
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1. Introduction  

The rapid growth of biomedical data has driven the need for advanced computational tools capable 

of analyzing complex medical images. Deep learning, particularly CNNs, has emerged as a powerful 

technique for automatic feature extraction and image classification. In this work, we assess the 

training performance of a CNN architecture applied to medical image classification by analyzing the 

loss and accuracy over 20 and 40 epochs.  

2. Methodology 

We utilized a Convolutional Neural Network (CNN) model trained on an extensive collection of 

medical images to evaluate its performance in image classification. The network's design included 

multiple convolutional layers that autonomously extract hierarchical spatial features from the input 

data. These layers were paired with max-pooling operations to downsample the feature maps, 

improving computational efficiency and generalization by retaining only the most significant 

patterns. Following the convolutional and pooling stages, fully connected layers consolidated the 

extracted features for the final classification. To enhance the model’s ability to capture complex data 

relationships, ReLU (Rectified Linear Unit) activation functions were applied after each layer, 

introducing non-linearity and enabling the learning of sophisticated patterns. 

2.1.DATA SET 

The dataset comprised a diverse collection of labeled medical images representing multiple 

diagnostic categories, enabling a comprehensive evaluation of the model's segmentation and 

classification performance. 

2.2.NETWORK ARCHITECTURE 

• Convolutional layers: Extracted hierarchical features from the input images. 

• Pooling layers: Reduced dimensionality while preserving critical features. 

• Fully connected layers: Mapped features to output classes. 

• Activation function: ReLU for non-linearity. 

• Loss function: Cross-entropy for binary classification. 

• Optimization algorithm: Adam optimizer. 
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Table 1: Model Architecture 

        Layer  Output Shape       Param # 

conv2d_24 (510, 510, 32) 896 

max_pooling2d_24 (255, 255, 32) 0 

conv2d_25 (253, 253, 64) 18,496 

max_pooling2d_25 (126, 126, 64) 0 

conv2d_26 (124, 124, 128) 73,856 

max_pooling2d_26 (62, 62, 128) 0 

flatten_8 (492032) 0 

dense_16 (128) 62,980,224 

dense_17 (2) 258 

 

3.Training Procedure 

The model was trained for 20 and 40 epochs to assess its learning progression at different training 

stages. Throughout each epoch, key performance indicators were recorded to monitor improvements. 

The loss function, which quantifies the difference between predicted outputs and actual labels, was 

tracked to evaluate how effectively errors decreased during training. Concurrently, accuracy 

representing the proportion of correctly classified samples was measured at every iteration. By 

analysing these metrics, we could determine whether the model successfully converged by 

progressively adapting to the training data or exhibited potential overfitting, where performance 

plateaued or degraded despite additional training. 

4. Results 

4.1. LOSS CURVE ANALISIS 

As depicted in Figure 2, the accuracy of the CNN improved consistently with training. The model 

achieved higher accuracy after 40 epochs, indicating the benefit of extended training. 
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4.2. Accuracy Curve Analysis 

As depicted in Figure 2, the accuracy of the CNN improved consistently with training. The model 

achieved higher accuracy after 40 epochs, indicating the benefit of extended training. 
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5. Discussion 

The performance improvement observed with extended training underscores the importance of 

sufficient epochs in achieving optimal network convergence. The decrease in loss and the 

corresponding increase in accuracy reflect the model’s ability to learn discriminative features from 

medical images. 

CNNs have proven effective in medical image classification due to their capability to capture 

spatial hierarchies. The results of this study align with previous findings in the literature, which 

highlight the effectiveness of deep learning models in medical image analysis. 

Table 2: Loss and Accuracy for Test ensemble 

Epochs Final Training Loss Final Training Accuracy 

20 0.35 87% 

40 0.21 93% 

6. Conclusion 

The structured architecture of CNNs, combined with advanced performance enhancement 

techniques, has significantly improved their effectiveness in medical anomaly detection. Techniques 

like data augmentation, transfer learning, and attention mechanisms have addressed challenges such 

as limited data and model generalization. 

Future research should explore integrating multimodal data and developing interpretable CNN 

architectures to further advance their clinical applications. 
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